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Summary

Passive seismic source location plays an important role in the seismological community for it is com-
monly used in retrieving the epicenter of earthquakes and evaluating the effectiveness of hydraulic
fracturing. Time reversal imaging is one of the most popular methods for source imaging. This method
back-propagates seismic recordings into medium and focuses energy at source locations. However,
events often can’t be fully focused leading to inadequate resolution of sources from a limited ob-
serving aperture. To solve this problem, this paper illustrate a source location method that adopts
group sparsity constrained waveform inversion. This method can retrieve source locations and origin
time simultaneously and the adopted group sparsity constraint is capable of yielding spatially sparse
results while the source function is smooth in time axis .

Introduction

Source imaging methods can be divided into two categories, namely ray based methods and wave-
form based methods (Castellanos and van der Baan, 2015). Compared with ray based methods,
waveform based methods (Artman et al., 2010) are more suitable for low signal-to-noise ratio data.
They use the complete waveform information, including not only P- and S-wave travel time but also
their phases and magnitudes. In the group of waveform methods, Artman et al. (2010) applied re-
verse time imaging on P- and S-wave respectively, followed by the application of an autocorrelation
imaging condition to image source locations. Similarly, Li et al. (2015) propose to back-propagate
acoustic seismic data using a representation-theorem-based reverse time imaging method. In a se-
ries of papers (Rodriguez et al., 2012a,b), it has been proposed to use group sparsity for the inversion
of seismic moment tensor. The latter adopted analytical Green functions for constant velocity media.
This article expands the aforementioned research and adopts Green functions that are computed by
solving two-way wave equation via finite difference method. At present time, our formulation is in
terms of acoustic Green functions for heterogeneous media but the proposed method can be easily
generalized to elastic media. Our method solves a least-squares two-way wave equation imaging
problem with group sparsity constraints. In essence, the method is similar to least-squares RTM
migration (Yao and Jakubowicz, 2012; Dai et al., 2012) but instead of imaging scatterers, we directly
image unknown sources.

Theory

The 2D velocity-stress acoustic wave equation can be written as
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where z,x denote spatial coordinate and t is time. vz and vx are used to represent vertical and hori-
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zontal particle velocity, respectively, p is stress. ρ is density, λ is lame constant. In acoustic case, the
shear modulus is assumed to be 0, it does not appears in our partial differential equations. f (z,x, t)
is source signature. To simplify the explanation of our method, we assume a simulation with nt = 4
forward propagation and the length of source signature is nt ′ = 2. Then, the forward propagation is
equivalent to matrix-vector operation (Ji, 2009)
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where di is the ith time step wave field at all receiver’s location. The length of di is equal to the number
of receivers, S indicates sampling matrix, which is specified by recording geometry. The operator L is
the one-step forward propagator, which is a highly sparse matrix. The matrix W denotes a weighting
matrix, which is designed to shrinking the size of model parameters. I is identity matrix with size of
4nz ·nx×4nz ·nx, nz and nx are the grid size of physical model (including absorbing boundary layers)
in the z-axis and x-axis. The vector mi represents the source signatures at ith time step,

mi = vec( f (z,x, ti)), (3)

where vec indicate the vectorization of a 2D array. An important assumption is embed in equation
2, the length of source time function nt ′ is shorter than that of recordings nt (nt ′ < nt). The forward
modelling process can be further simplified as

d = Gm, (4)

where d is seismic recordings, G represent forward modelling operator which includes source injec-
tion, finite difference propagation and data acquisition. This source location problem is solved by
least square method, the cost function is given as

m = argmin
m

||d−Gm||22 +λ ||M||1,1,2, (5)

where M is a 3D array obtained by reshaping m via

M = reshape(m,nz′,nx′,nt ′). (6)

We can easily spot that M is sparse in the first and second dimensions. The latter corresponds to
making the sparse assumption in the spatial domain. However the source time function is smooth.
In another words, the reshaped model parameter M is smooth in the third dimension. We introduce
the group sparsity constraint (Kowalski and Torrésani, 2009) to simultaneously capture spatial sparse
and smoothness in time. Therefore, we adopt the constraint defined as
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This cost function is solved in the framework of the FISTA algorithm (Beck and Teboulle, 2009) which
requires the adjoint of forward modelling operators. We provide the adjoint operator by transposing
the blocks matrix in equation 2 .

Example

A smoothed Marmousi velocity model (Figure 1a) is used to demonstrate the effectiveness of our
method. The triangles in Figure 1a are used to represent receiver array and stars indicate the location
of sources. The grid size in both x-axis and z-axis is 20m, time step size is 0.002s. 15Hz Ricker wavelet
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a)             b)            

Figure 1: a) Smoothed Marmousi velocity model, the black triangles are receivers, the stars indicate
the locations of sources, red color denotes the sources with positive amplitude, black color with
negative amplitude. b) Multi-channel recordings.

is implemented as source time function. The amplitude of the source indicated by red star is equal to
1 while the other one is −1. The multi-channel recordings are displayed in Figure 1b. Figure 2 shows
the inverted results which include source images (Fiugre 2a) and time function (Figure 2b). Figure 2c
display the true source time functions. We can see that the spatial distribution of sources and time
function are correctly retrieved. We plot 2 time slices (Figure 3b, c) to further examine the inverted
result, Figure 3b is corresponding to the time slice indicated by AA′ and BB′ is shown in Figure 3c.

Conclusion

We have developed a source imaging method via group sparsity constrained waveform inversion.
This method are capable of estimating source location and retrieving origin time simultaneously. The
size of unknowns can be reduced by implementing a weighting matrix, which is designed based on
proper prior information about the area containing passive seismic events. A group sparsity constraint
is used to provide results which are sparse in spatial domain while smooth in time axis.
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Figure 2: a) Inverted source image. b) Inverted source time function. c) true source time function.
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Figure 3: a) Inverted source image. b) Inverted source time function. c) true source time function.
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