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Summary

Seismic migration from topographic surfaces using finite difference approximation suffers from nu-
merous drawbacks. The main one is adjusting the stencils to an irregular computational grid. To
overcome this problem, static-corrections are frequently applied but can result in degraded images
for areas with complex topography. In this paper, we consider a coordinate transformation to tackle
the problem of migration from topography. The transformation is designed to map a stretched coor-
dinate system conformal to the undulated surface into a Cartesian one. Through the transformation
both forward modelling and imaging (RTM) algorithms can be properly applied. We present a numer-
ical example to highlight the advantages of this method for land seismic data.

Introduction

Conventional migration of land seismic data from an irregular surface requires pre-processing due to
the presence of distorted wavefields. On one hand, conventional time shift for static corrections are
insufficient in the presence of steep elevations and complex near surface velocity structures. On the
other hand, Reverse Time Migration (RTM) based on finite difference approximation schemes results
in degraded images bearing severe numerical artifacts.

In our work, we introduce a finite-difference (FD) discretization scheme that solves the wave equation
without the needs of additional statics correction. We implement a mapping from a stretched curvi-
linear grid conformal to the free surface to a Cartesian grid (Fornberg, 1988; Tessmer et al., 1992;
Hestholm and Ruud, 1994; Shragge, 2016). Discretization is accomplished through FD stencils using
velocity-stress formulation on a staggered grid system (Virieux, 1986). Finally, synthetic numerical
results for a 2D acoustic model are presented to highlight the advantages of using this method for
imaging land seismic data.

Theory

From wave equation propagation theory in 2D acoustic media, a velocity-stress formulation is stated
by the following system of first order partial differential equations
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where ρ is the medium density, vi are the components of the velocity, λ is a Lamé parameter and p
is the pressure.

In order to handle irregular surfaces, we adopt a non-Cartesian generalized curvilinear system. The
coordinate system is bounded in the vertical direction by the topography. Below the topographic
surface, the undulations of the x1-axis decrease linearly with depth, becoming flat at the bottom of
the system. Horizontally, the system is bounded by x1 = 0 and x1 = xmax.
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To discretize the first-order partial differential equations 1 to 3 in a staggered FD scheme, a rectilinear
grid is needed. For the topographic surface scenario, and following Hestholm and Ruud (1994),
we use a linear mapping from a rectangular coordinate system (ε,η) to the curved or stretched
coordinate system (x,z) conformal to the rugged surface

x(ε,η) = ε

z(ε,η) =
η

ηmax
z0(ε) ,

(4)

where z0(ε) is the topographic function. The rectangular grid is bounded horizontally by ε = 0 and
ε = εmax, and vertically by η = 0 and η = ηmax.

Next, we assume that the curved grid previously defined is embedded on a Cartesian coordinate
system where the velocity-stress formulation (equations 1 to 3) is valid. Thus, using chain rule, we
obtain the following first-order partial differential equations in the numerical grid
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The previous set of equations can be solved using forth order in space and second order in time
staggered FD stencils.

Finally, RTM is implemented in the same rectangular coordinate system using the velocity-stress
formulation. We adopt the source normalized imaging condition Claerbout (1971)

I(x,z) = ∑
s

∑t S(x,z, t)R(x,z, t)
∑t S(x,z, t)S(x,z, t)+ν

, (9)

where s denotes the number of sources, and ν is a stabilizing parameter that prevents dividing by
zero. The fields S(x,z, t) and R(x,z, t) are the source wavefield computed by forward modeling and the
receiver wavefield computed by reverse-time extrapolation, respectively.

Examples

In order to asses the performance of the proposed method, we present a numerical experiment where
we adopt the Marmousi velocity model. The model is discretized on a 2301 x 751 grid with a uniform
spacing of 4 m in vertical and horizontal directions (Figure 1). Time stepping is 0.0002 s. A total of
12 sources and 2400 receivers are considered in our example. Sources are placed one grid block
below the free surface. In addition, we apply Perfectly Matching Layers (PML) boundary conditions
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Figure 1: Marmousi velocity model without topography (a) and with topography (b). (c) and (d) Shot
gather from models (a) and (b), respectively.

(Berenger, 1994) to absorb undesired reflections from boundaries. Using such conditions we mimic
absorbing outgoing waves at the numerical border of the modelled volume. In contrast, for the upper
surface we apply a free surface boundary condition to mimic land acquisition conditions.

In Figure 1(a), a flat free surface is considered, while in Figure 1(b) the free surface corresponds to a
rugged topography. Figures 1(c) and (d) present the corresponding shot gathers for a source placed
in the center of the acquisition surface.

Figures 2 (a) and (b) display the corresponding RTM images. These figures demonstrate that our
scheme is properly handling not only the presence of complex structures, but also the presence of
topography avoiding the propagation of numerical artifacts.
Conclusion
We presented a 2D acoustic imaging subsurface method that handles rugged topographic surfaces.
The proposed technique performs a coordinate transformation from a curved system conformal to a
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Figure 2: (a) RTM image obtained for the Marmousi velocity model adopting a flat surface (b) RTM
image obtained from topography with the proposed method.

rugged surface into a Cartesian one. In this new mesh we solved the first order velocity-stress wave
propagation problem. We successfully imaged a complex structure via RTM. The FD technique uses
4th order in space and 2nd order in time staggered stencils. The presented numerical examples
highlight the successful application of RTM to data with rugged topographic surface and complex
subsurface geology.
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