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Summary

Time domain elastic least-squares reverse time migration (LSRTM) is formulated as a linearized elastic waveform
inversion problem. The elastic Born approximation and elastic reverse time migration (RTM) operators are derived
from the time-domain continuous adjoint-state method. We define P-wave and S-wave impedance perturbations as the
unknown elastic images. The algorithm is obtained using a continuous functional form where the problem is discretized
at the final state prior to applying quadratic optimization. The discretized numerical versions of the elastic Born and
elastic RTM operators pass the dot product test. The conjugate gradients least-squares (CGLS) method is used to solve
the least-squares migration optimization problem. The inverse of the diagonal of the Pseudo-Hessian operator is used
to accelerate the convergence of the elastic LSRTM. The elastic LSRTM provides higher resolution images with fewer
artifacts and a superior balance of amplitudes when compared to elastic RTM. More important, elastic LSRTM can
remove cross-talk between the P-wave and S-wave impedance perturbations. Finally, we also show that the adopted
Pseudo-Hessian preconditioning strategy accelerates convergence and improves the recovery of image amplitudes.

Introduction

Migration is the most commonly used tool to map the subsurface image in exploration seismology. Images obtained
via migration suffer from relative low resolution, unbalanced amplitudes and artifacts. Different linearized inversion
problems have been formulated to iteratively invert the migration blurring kernel: least-squares Kirchhoff migration
(Tarantola, 1984; Nemeth et al., 1999), least-squares one-way wave equation migration (Kuehl and Sacchi, 2003;
Wang et al., 2005; Kaplan et al., 2010) and least-squares reverse time migration (Bourgeois et al., 1989; Dai et al.,
2012). The aforementioned LSM methods are based on acoustic approximation. Land data and ocean bottom data
record both P- and S-waves and therefore, it is important to investigate least-squares migration for elastic media. Elastic
least-squares ray-Born migration/inversion was implemented by Beydoun and Mendes (1989) and Jin et al. (1992) in
heterogeneous medium. Anikiev et al. (2013) investigated the decoupling of parameters for frequency domain elastic
LSRTM for the case of a point scatter in a homogeneous isotropic elastic background model. In these studies, the elastic
parameter perturbations are inverted and used as “elastic images”. Stanton and Sacchi (2015) and Xu et al. (2016)
utilized Helmholtz decomposition (Dellinger and Etgen, 1990) based wavefield separation for elastic least-squares split-
step and reverse time migration for the inversion of elastic reflectivity volume in extended domain, respectively. In this
article, a time-domain elastic LSRTM is formulated as a linearized elastic full waveform inversion problem (Chen and
Sacchi, 2016). The elastic Born approximation and elastic RTM operators are derived via the adjoint-state method.
The adjoint state equation system is the same with the state equation system with the only difference: the explosive
source is replaced by adjoint source. In our work, P-wave and S-wave impedance perturbations are defined as elastic
images. All derivations are in continuous functional form, the problem is discretized after developing the algorithm. The
discretized numerical version of elastic Born approximation operator and elastic RTM operator pass the dot product
test (Claerbout, 1992). The latter allows the use of conjugate gradient least-squares (CGLS) algorithm (Paige and
Saunders, 1982) for solving the least-squares optimization problem. The inverse of the diagonal of the Pseudo-Hessian
(Shin et al., 2001) is used to accelerate the convergence of the elastic LSRTM.

Theory

The propagation of seismic wave in isotropic elastic heterogeneous medium is governed by the equations

ρ v̇−∇ ·σ = 0,

σ̇ −µ

(
∇v+∇vT

)
−λ (∇ ·v)I = f,

(1)

where v denotes particle velocity field and σ denotes the stress field, ρ is the density, λ and µ are the Lamé parameters,
f is the explosive source term. The elastic wave equation is the state equation of the elastic parameter inversion problem
when it is regarded as optimal control problem (Lions, 1971). The wavefield is a nonlinear implicit function of the model
parameters

u = u(m), (2)

where m = (ρ,λ ,µ)T and u = (v,σ)T . A numerical method must be used to solve the forward problem. In this article, a
time domain staggered-grid finite-difference scheme (Virieux, 1986) is utilized to discretize the continuous form elastic
wave equation. The unsplit Convolutional Perfectly Matched Layer (C-PML) method is used to absorb the incident
wave on the artificial boundaries (Komatitsch and Martin, 2007). Seismic migration techniques often rely on the adjoint
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of the linearized forward problem. Taylor series expansion can be used for linearizing the nonlinear forward problem.
We assume that the Lamé parameters are perturbed around a smooth background model λ → λ + δλ ,µ → µ + δ µ.
Dropping the second and higher order terms in the perturbed elastic wave equation leads to the following first-order
Born approximation

ρδ v̇−∇ ·δσ = 0,

δ σ̇ −µ(∇δv+∇δvT )−λ (∇ ·δv)I = δ µ(∇v+∇vT )+δλ (∇ ·v)I,
(3)

where δv and δσ are scattered particle velocity field and scattered stress field due to model perturbations δλ and δ µ,
v is the incident particle velocity field in the smoothed background model ρ, λ and µ. The right side of equation is the
so-called “secondary source”. The scattered wavefield can be computed using the same finite-difference codes that is
adopted to compute the source side incident wavefield in equation 1. The relationship between the model perturbations
and wavefield perturbations is linear (Born approximation)

δu =
∂u
∂m

δm = Fδm, (4)

where δm = (δλ ,δ µ)T , δu = (δv,δσ)T and F is the Fréchet derivative. We denotes the Born modelling as follows

δd = T δu = T Fδm = L δm, (5)

where operator T represents the sampling of wavefield at receiver locations. The migration operator is the adjoint of
the Born modelling operator that maps from reflection data to model perturbation or image

δm = L †
δd = F †T †

δd, (6)

where L † is reverse time migration operator. After derivations using time domain continuous adjoint-state method
(Lions, 1971; Fichtner et al., 2006), we obtain

δλ =

∫ T

0
(∇ ·v)(∇ ·

∫ T

0
υdt)dt, δ µ =

∫ T

0
(∇v+∇vT ) : (∇

∫ T

0
υdt)dt, (7)

with υ as adjoint-state particle velocity field that can be computed using the adjoint-state equation

ρυ̇−∇ · ς =−T †
δd,

ς̇ −µ

(
∇υ +∇υ

T
)
−λ (∇ ·υ)I = 0,

(8)

where −T †δd is the adjoint source. The same finite-difference code adopted to solve the forward equation system 1
and Born modelling equation system 3 can be reused to compute the adjoint wavefield in equation 8. The only difference
is that the source term is replaced by the adjoint source and the finite-difference steps are in time reversal mode. A
careful discretization of the aforementioned linear operators leads to a numerical forward elastic Born approximation
operator L and a numerical elastic RTM operator L † pass the dot product test (Claerbout, 1992). The elastic least-
squares reverse time migration is formulated as a quadratic optimization problem

J (δm) =
1
2

Ns∑
i=1

‖Liδm−δdi‖2
2, (9)

where Li is the Born operator for the ith shot, δdi is the reflection data associated to the ith shot gather, δm is the
model perturbation (image) relative to the background model, Ns indicates the number of shots. For reflection seismic
data, P- and S-wave impedance are most suitable parameters for elastic waveform inversion (Tarantola, 1986). We
parameterized our elastic LSRTM in terms of P-wave impedance perturbation δ Ip and S-wave impedance perturbation
δ Is. Using the chain rule, the relationship between model perturbations can be written as follows(

δ Ip
δ Is

)
=

(
2Vp 0
−4Vs 2Vs

)(
δλ

δ µ

)
. (10)

In our algorithm , we have incorporated the parameter transformation matrix and its adjoint into the CGLS solver.
The change of parameters is similar to adding preconditioning to our system of equations. The information from the
Hessian can precondition the linear system of equations. The Hessian for elastic LSRTM is H =

∑Ns
i=1 L †

i Li. The
latter is extremely expensive to compute. Shin et al. (2001) proposed to neglect the receiver Green’s function to save
computation cost. Under this assumption, the Hessian can be simplified to the so-called “Pseudo-Hessian”

H λλ
pseudo(x,x

′) =
Ns∑

i=1

∫
(∇ ·v(x)I) : (∇ ·v(x′)I)dt,

H
µµ

pseudo(x,x
′) =

Ns∑
i=1

∫
(∇v(x)+∇v(x)T ) : (∇v(x′)+∇v(x′)T )dt.

(11)
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We use the diagonal of Pseudo-Hessian to precondition the elastic LSRTM problem. The preconditioned version of our
elastic LSRTM minimizes

J (δm̃) =
1
2

Ns∑
i=1

‖LiPHPT δm̃−δdi‖2
2, (12)

where PH denotes Pseudo-Hessian preconditioning, PT denotes the adjoint of parameter transformation matrix in
equation 10, (δλ ,δ µ)T = PHPT δm̃ and (δ Ip,δ Is)

T = PT
−1(δλ ,δ µ)T . Elastic LSRTM problem 12 is solved by the

preconditioned conjugate gradient least squares (PCGLS) algorithm (Bjorck, 1996).

(a) (b) (c)

(d) (e) (f)

Figure 1: Elastic Camembert model. (a) Compressional velocity model. (b) Smoothed compressional velocity model. (c) True P-wave impedance perturbation. (d) Shear
velocity model. (e) Smoothed shear velocity model. (f) True S-wave impedance perturbation.

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) P-wave impedance perturbation image got by elastic RTM. (b) P-wave impedance perturbation image got by elastic LSRTM. (c) P-wave impedance perturbation
image got by preconditioned elastic LSRTM. (d) S-wave impedance perturbation got by elastic RTM. (e) S-wave impedance perturbation image got by elastic LSRTM. (f) S-wave
impedance perturbation image got by preconditioned elastic LSRTM.

Examples

The codes for our numerical examples were written in C and parallelized with Message Passing Interface (MPI). All the
“observed data” in this article are generated with time-domain elastic finite-difference method. Figure 1 a and d show
the true compressional and shear velocity models for the elastic Camembert model. The velocity anomalies for P and S
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are in different positions. Density is assumed to be constant. Figure 1 b and e show the smoothed background velocity
models for elastic RTM or elastic LSRTM. Figure 1 c and f show the true P-wave and S-wave impedance perturbations
with respect to the background models. The results of elastic RTM (Figure 2 a and d) contain obvious cross-talk between
P-wave and S-wave impedance perturbations and migration artifacts. Elastic LSRTM (Figure 2 b and e) not only can
remove the multi-parameter cross-talk but also has fewer artifacts, more balanced amplitudes and higher resolution.
The results were computed after 82 iterations of the elastic LSRTM. The relative data misfit percentage reduces to 6%.
Figure 2 c and f show the Pseudo-Hessian preconditioned elastic LSRTM after 35 iterations.The relative data misfit
also reduces to 6%. The results are similar with un-precondition elastic LSRTM. Figure 3 a and d shows the modified
elastic Marmousi2 P- and S-wave velocity models. In the steep fault zone, there are two hydrocarbon reservoirs around
depth 500 m that have decreased P-wave velocity and a small change in the S-wave velocity. This uncorrelated P- and
S-wave structure will cause cross-talk in elastic RTM images. Figure 3 b and e show the smoothed background velocity
model for elastic RTM and elastic LSRTM. Figure 3 c and f show the true P-wave and S-wave impedance perturbation
with respect to the smoothed background models. From this figure, we can also see that the P- and S-wave models are
inconsistent in the two hydrocarbon reservoirs region at around 500 m depth in the steep fault zone.

(a) (b) (c)

(d) (e) (f)

Figure 3: Elastic Marmousi2 model. (a) Compressional velocity model. (b) Smoothed compressional velocity model. (c)True P-wave impedance perturbation. (d) Shear
velocity model. (e) Smoothed shear velocity model. (f) True S-wave impedance perturbation.

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) P-wave impedance perturbation image got by elastic RTM. (b) P-wave impedance perturbation image got by elastic LSRTM. (c) P-wave impedance perturbation
image got by preconditioned elastic LSRTM. (d) S-wave impedance perturbation got by elastic RTM. (e) S-wave impedance perturbation image got by elastic LSRTM. (f) S-wave
impedance perturbation image got by preconditioned elastic LSRTM.

Figure 4 a and d show the P- and S- wave impedance perturbation images of elastic RTM. It successfully imaged most
of the geology structures. However, the image amplitudes are unbalanced for shallow and deep parts of the model.
Even though after applying Laplacian filter, the images still have high amplitude low frequency RTM artifacts. There
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are also uncollapsed energy artifacts caused by not having a dense distribution of sources and limited aperture. Most
important, the elastic RTM operator generated cross-talk between P and S images in the two hydrocarbon reservoir
areas because the P- and S-wave velocity structure are different. The elastic LSRTM was iterated for 98 iterations.
The relative data misfit percentage reduces to 40%. The elastic LSRTM (Figure 4 b and e) corrected the unbalanced
amplitudes and suppressed the low-frequency RTM artifacts and artifacts caused by limited aperture. The elastic
LSRTM also generate higher-resolution images. More important, the elastic LSRTM can successfully decouple multi-
parameters and suppress multi-parameter cross-talk in the hydrocarbon reservoir area in P and S images. Figure 4
c and f shows the Pseudo-Hessian preconditioned elastic LSRTM after 55 iterations whose relative data misfit also
reduces to 40%.

Conclusions

The elastic LSRTM produces higher resolution images with fewer artifacts and more balanced amplitudes than elastic
RTM. More important, elastic LSRTM can remove the multi-parameter cross-talk that are presented in elastic RTM
images. In essence, the off-diagonal elements of the Hessian operators are attenuated by the inversion process. The
Pseudo-Hessian preconditioning operator adopted in our work not only accelerates convergence but also improves the
amplitude response of our images.
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