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Summary

Tensor completion techniques (including tensor denoising) can be used to solve the ubiquitous multi-
dimensional data reconstruction problem. We present a robust tensor reconstruction method that can
tolerate the presence of erratic noise. The method is derived by minimizing a robust cost function with
the addition of low rank constraints. Our presentation is based on the Parallel Matrix Factorization
(PMF) tensor completion method that we modify to cope with erratic noise.

Introduction

Seismic data reconstruction via reduced-rank methods offers an interesting solution to the multi-
dimensional seismic reconstruction problem (Trickett and Burroughs, 2009; Burroughs and Trickett,
2009; Oropeza and Sacchi, 2011). However, reduced-rank methods might fail when the data are
contaminated by erratic non-Gaussian noise. This problem has mainly been studied in the context
of Cadzow reconstruction algorithms (Trickett et al., 2012; Chen and Sacchi, 2015). Recently, tensor
completion methods (Kreimer and Sacchi, 2012; Kreimer et al., 2013) have been proposed as an
alternative to Cadzow reconstruction algorithms. Tensor completion operates directly on multi-linear
arrays formed from binned patches of seismic data in the frequency-space domain and, unlike Cad-
zow reconstruction methods, they do not require to embed multidimensional data in block Hankel
matrices.

We propose to adapt the PMF tensor completion method (Xu et al., 2013) to cope with erratic noise
and to design a robust algorithm for 5D seismic interpolation (Gao et al., 2015, 2016). The PMF
tensor reconstruction method is implemented in midpoint-offset frequency domain. The data are rep-
resented by D(ω,x,y,hx,hy), where x, y, hx and hy indicate the spatial coordinates in the inline midpoint,
cross-line midpoint, in-line offset and cross-line offset. After binning the data into a midpoint-offset
grid, a frequency slide can be denoted as D(ω,x,y,hx,hy). The latter can be represented by a 4th-
order tensor D with elements Di1,i2,i3,i4 , where i1, i2, i3, i4 are bin indices for the spatial coordinates
x,y,hx and hy, respectively. We will remove the dependency on ω to simplify the notation. Clearly,
we could have also adopted a reconstruction in terms of x,y,h and A where h is absolute offset
h =

√
h2

x +h2
x and A is azimuth A = arctan(hx/hy).

Theory

We assume the following model for our multi-dimensional data tensor

D = P◦Z +E . (1)

We will assume tensors of order N but bear in mind that our final application entails reconstructing
tensors of order N = 4 to solve the 5D reconstruction problem. The data tensor denoted by D contains
the observed seismic data, Z is the ideal complete and uncorrupted data tensor, P is the sampling
operator and E indicates additive noise. The symbold ◦ indicates element-to-element product. The
reconstructed data are obtained by minimizing the following cost function

Φ = ΦM +µ ΦC , (2)
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where ΦM is the data misfit term and ΦC is a low-rank constraint term

ΦC =
N

∑
k=1
‖X(k)Y(k)−Z(k)‖2

F . (3)

The matrix Z(k) is the mode-k unfolding matrix of the ideal data Z. Figure 2 portrays the process
of unfolding and folding arbitrary tensor X of order N = 3. A low-rank matrix factorization is applied
to each mode unfolding of Z by seeking matrices X(k) ∈ CIk×rk and Y(k) ∈ Crk×I1...Ik−1Ik+1...IN such that
Z(k)≈X(k)Y(k) for k = 1, . . . ,N, where rk is the rank of the unfolding matrix Z(k). In our original algorithm
(Gao et al., 2015) the data misfit is given by

ΦM = ‖(P◦Z−D)‖2
2

= ∑
i1,i2,,...iN

|Pi1,i2,,...iN Zi1,i2,,...iN −Di1,i2,,...iN |2 . (4)

The latter can cope with Gaussian noise and it is inadequate for data containing erratic noise. In this
presentation, we adopted the l1/l2 norm (Bube and Langan, 1997; Lee et al., 2006) to develop an
algorithm that can tolerate outliers

ΦM = ‖(P◦Z−D)‖l1/l2

= ∑
i1,i2,...iN

√
|Pi1,i2,...iN Zi1,i2,,...iN −Di1,i2,,...iN |2 + ε2 . (5)

In order to solve for X(k), Y(k) and Z, we minimize the cost function Φ via an alternating least-squares
algorithm. If we adopt the robust misfit (equation 5), we end up with the following iterative algorithm

Xi+1
(k) = Zi

(k)(Y
i
(k))

H , k = 1, . . . ,N, (6a)

Yi+1
(k) = ((Xi+1

(k) )
HXi+1

(k) )
†(Xi+1

(k) )
HZi

(k), k = 1, . . . ,N, (6b)

Zi+1 = A◦D+(I−A◦P)◦C , (6c)

where I is the Nth order tensor with all entries equal to 1 and C is given by

C =
1
N

N

∑
k=1

foldk[Xi+1
(k) Yi+1

(k) ] . (7)

The index k is used to indicate mode and i indicates iteration number. The tensor A denotes the
weights induced by the l1/l2 norm

Ai1,i2,...iN =
1

1+Nµ
√
|Pi1,i2,...iN Zi1,i2,...iN −Di1,i2,...iN |2 + ε2

. (8)

It is easy to show that if one adopts a quadratic (l2) misfit (equation 4), the expression in equation 6(c)
needs to be replaced by Zi+1 = aD+(I−aP)◦C where a = (1+Nµ)−1. In other words, the tensor of
weights A reduces to a scalar (Gao et al., 2015). Figure 2a portrays the robust l1/l2 norm and Figure
2b shows the function of weights A for two values of the parameter µ. The shape of the weighting
function is controlled by the trade-off parameters and ε. One must tune these two parameters to
reject outliers. The problem also involves tuning the rank parameter rk in the constraint.

Examples

We have designed a synthetic example that consists of a 5D patch of size 256× 18× 10× 10× 10.
We are providing a view of one slice of the patch in Figure 3a. The 5D patch was contaminated with
Gaussian noise and erratic noise. The maximum amplitude of the clean signal is 1. The signal was
contaminated with white Gaussian additive noise with standard deviation σ = 0.2 and then, we have
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Figure 1: Illustration showing the 3 modes in which a tenser of order N can be unfolded. The PMF
algorithm applies rank reduction to matrices obtained by unfolding the orignal tensor.
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Figure 2: a) Functional form of the l2/l1 norm W (x) =
√
|x|2 + ε2. b) Functional form of the weights

A(x) = (1+Mµ
√
|x|2 + ε2)−1 for trade-off parameters µ = 0.2 and 0.5
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Figure 3: Denoising of a 5D volume of size 256× 18× 10× 10× 10. a) Slice of the uncorrupted
volume. b) Data contaminated with Gaussian and erratic noise. c) Tensor reconstruction assuming
data contaminated with Gaussian noise. d) Robust tensor reconstruction.

also added erratic noise in the form of spikes with maximum amplitude ±25. The data contaminated
by Gaussian noise plus erratic spiky noise if portrayed in Figure 3b. In this case the sampling operator
P = 1 for all grid point because we are considering a denosing problem with a fully sampled 5D
tensor. Figure 3c is the resulting data after applying our original algorithm using the quadratic l2
misfit given by equation 4. The method has failed to properly denoise the data. To continue with
our analysis, we have run the proposed algorithm with the robust misfit function (equation 5) with
result portrayed in Figure 3d. The new method can cope with the presence of erratic noise. Our
second example involves simultaneous denoising and reconstruction of a 5D cube. The cube size is
256×18×10×10×10 and 60% of the data has been eliminated via the sampling operator to simulate
a patch of a sparse orthogonal survey after binning the data in mid-point offset. The reconstruction
via the l2 misfit is portrayed in Figure 4c. Finally, we also show the reconstruction with the proposed
method that uses a robust l1/l2 misfit in Figure 4d. The proposed method can also cope with the
reconstruction of 5D volumes in the presence of erratic noise. In both examples we have used
µ = 0.5 and ε = 0.01.

Conclussion

The PMF algorithm has been proposed to reconstruct 5D volumes (Gao et al., 2015, 2016). One
shortcoming of our original PMF algorithm was its inability to reconstruct 5D data when erratic noise
corrupts the observations. A simple modification has permitted us to obtain an algorithm that down-
weights the re-insertion of samples containing erratic noise.
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Figure 4: Reconstruction of a 5D volume of size 256× 18× 10× 10× 10. a) Slice of the uncorrupted
volume. b) Data contaminated with Gaussian and erratic noise. c) Tensor reconstruction assuming
data contaminated with Gaussian noise. d) Robust tensor reconstruction.
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