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Summary

We present a Singular Spectrum Analysis (SSA) filter (also called Cadzow filter) for vector field mea-
surements. We use the vector autoregressive model to generalize the classical SSA method for
scalar fields to vector fields. Multiple applications of Vector-SSA (V-SSA) are under study. In par-
ticular, the method can be used for 3C random noise attention and reconstruction of missing traces
including 5D vector field reconstruction. We use synthetic examples to illustrate vector denoising and
reconstruction.

Introduction

Singular Spectrum Analysis (also known as Cadzow filters) has become an important tool for denois-
ing seismic data in the f −x domain (Trickett, 2008; Oropeza and Sacchi, 2011). The SSA filter is also
used in conjunction with data imputation algorithms to solve the seismic data reconstruction problem.
Examples of the latter include 3D reconstruction (Oropeza and Sacchi, 2011; Naghizadeh and Sac-
chi, 2013) and 5D reconstruction (Trickett and Burroughs, 2009; Burroughs and Trickett, 2009; Gao
et al., 2013). A robust version of the SSA filter has been proposed by Chen and Sacchi (2013).
Furthermore, SSA has been modified to interpolate aliased data (Naghizadeh and Sacchi, 2013).

Current work on SSA filters has centred on scalar fields (single component data). In this presentation
we investigate the application of SSA filters to vector field data. We pay particular attention to vector
autoregressive models (Naghizadeh and Sacchi, 2012). The later leads to the generalization of the
SSA filter to vector field data.

Theory

We first define a scalar field P(x,ω). For instance, one could have observed pressure or vertical
particle velocity by a hydrophone or geophone, respectively. Similarly, we define a vector field as
follows

~P(x,ω) =

P1(x,ω)
P2(x,ω)
P3(x,ω)

 (1)

where one understands that Pi indicates, for instance, the two horizontal components (i = 1,2) and
the vertical component (i = 3) fields measured by a 3C receiver at spatial position x. Clearly, our
measurement are in time but we prefer to simplify the analysis by working in the frequency domain
with one monochromatic frequency component ω at a time. The discrete scalar field can be ob-
tained by discretizing the spatial axis x as follows xn = (n− 1)∆x where ∆x is the spacing between
measurements. We represent the scalar discrete field via

P(xn,ω)≡ Pn, n = 1, . . . .N

We can adopt a scalar autoregressive model (with no innovation) of order p = 2 to, for instance,
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represent the superposition of two complex sinusoids in x. This is equivalent to model two constant-
dip events in t− x

Pn = a1Pn−1 +a2Pn−2 . (2)

Similarly, we can define the discrete vector field at position xn = (n−1)∆x

~P(xn,ω)≡ ~Pn, n = 1, . . .N .

One can define a recursion for vector fields by adopting the so called vector autoregressive (VAR)
process (Naghizadeh and Sacchi, 2012; Kamil et al., 2015)

~Pn = A1~Pn−1 +A2~Pn−2 (3)

where A1 and A2 are 3× 3 matrices. We have basically replaced the scalar AR coefficients ai by
matrices Ai.

Let us consider the case with p = 1. In this case only one matrix is needed by the vector AR repre-
sentation A ∈ C 3×3

~Pn = A~Pn−1 . (4)

We now continue with the usual SSA filter (Oropeza and Sacchi, 2011) where one first defines the
Hankel matrix of the scalar spatial observations. However, we now re-define the Hankel matrix via
entries that correspond to vector elements

H =


~P1 ~P2 ~P3 ~P4
~P2 ~P3 ~P4 ~P5
~P3 ~P4 ~P5 ~P6
~P4 ~P5 ~P6 ~P7
~P5 ~P6 ~P7 ~P8

 , (5)

After substituting equation 4 into 5 , we arrive to the following expression

H =


~P1 A~P1 A2~P1 A3~P1
~P2 A~P2 A2~P2 A3~P2
~P3 A~P3 A2~P3 A3~P3
~P4 A~P4 A2~P4 A3~P4
~P5 A~P5 A2~P5 A3~P5

 . (6)

The Hankel matrix of the vector field data modelled by 4 is a matrix of rank r = 1. In essence, we can
generalize the scalar SSA algorithm to a vector SSA algorithm by embedding vector measurements
~Pn in a Hankel matrix. We can show that for 3C data that consist of the superposition of p linearly
polarized events in t− x, the rank of the vector field Hankel matrix is rank = p. This is an important
result that permits the development of new Hankel-based algorithms for denoising and reconstruction
of 3C seismic data.

The vector SSA filter can be reduced to the following expression (Oropeza and Sacchi, 2011)

F [.] = A RH [.] (7)

where A is the un-Hankelization operator (averaging across anti-diagonals), R is the rank reduction
operator and H is the process of forming the Hankel matrix from the vector field data. We clarify that
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the rank reduction operator (R) can be implemented via the Singular Value Decomposition (SVD)
or via a fast randomized (SVD). If we denote T the sampling operator, we can use the imputation
algorithm described in Oropeza and Sacchi (2011) to reconstruct missing traces

~Pk = α~Pobs +(1−αT )◦F [~Pk−1] (8)

where k is iteration and α ∈ (0,1] is the trade-off parameter. The vector field data with missing traces
is ~Pobs.

Examples

We have created a synthetic example that consists of 4 linear events impinging on 3C geophones.
The 4 dips are recorded via the components X , Y and Z. Each event has a different polarization in X ,
Y and Z components. The maximum amplitude of the noise-free data is 1 and the standard error of the
noise in each component is σ = 0.8. We transform the data to the f −x domain an apply two denoising
algorithms to the multi-component data set. First, we apply the scalar SSA filter to each component
separately (Oropeza and Sacchi, 2011). Then, we apply the vector SSA filter simultaneously to X ,Y
and Z. In all cases, we adopted rank = 4 and run the algorithms in the frequency range 0 to 100Hz.
Figure 1 shows the spectrum of singular values of the Hankel matrix formed by the vector field data at
30Hz. Clearly, one can identify the presence of 4 waves immersed in noise. To quantify our findings,
we have evaluated the quality of the reconstruction for each individual component

Q = 10 log10(
||D0||2

||D̂−D0||2
) ,

where D̂ and D0 indicate the estimated data after denoising and the true uncorrupted data, respec-
tively. Figure 2 shows values of Q for SSA and V-SSA for three different signal-to-noise ratio scenar-
ios. It is important to mention that in these examples V-SSA outperforms SSA by about 5dB in all
tests.

We also tested vector-field SSA reconstruction. In the first case we tested the algorithm with noise-
free data. The results are shown in Figure 3. In this case we choose α = 1 which corresponds to the
reconstruction of noise-free data. Choosing α = 1 entails applying full re-insertion of the measured
data in each iteration. We repeated the example but now we have contaminated the data with random
noise (σ = 0.4). In this case we have adopted a reinsertion parameter α = 0.95. Final results are
portrayed in Figure 3. In both cases, we run the V-SSA from 0 to 100Hz for a maximum number of 30
iterations per frequency.

Conclusions

We have generalized SSA denoising and reconstruction to the vector field case. We first embed the
3C data into a Hankel matrix. Then, we apply rank-reduction and anti-diagonal averaging to estimate
the denoised data. Like in the scalar case, noise increases the rank of the ideal Hankel matrix of the
uncorrupted data. Then, rank reduction is used to attenuate noise. Dead traces also increase the
rank of the Hankel matrix of the ideal fully sampled data. The SSA iterative imputation algorithm was
also generalized to reconstruct vector field measuments.
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Figure 1: Singular values of the vector Hankel matrix for noise data and for one monochromatic
frequency (30Hz). Four polarized waves of different dips are present in the data

Figure 2: Quality of the reconstruction in dB. Circles correspond to vector reconstruction (V-SSA) and
stars to scalar (SSA) reconstruction. In both cases a subspace of p = 4 eigen-images was used to
denoise both scalar and vector Hankel matrices. A consistent gain of 5dB is obtained by using vector
denoising (V-SSA)
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(a)	 (b)	

Figure 3: Denoising (a) and reconstruction (b) of 3C data via V-SSA.
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