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Summary

Incoherent noise attenuation remains a challenging problem in seismic data processing. While many
tools are successful at removing noise, this often comes at the expense of some signal. We seek
the ideal noise attenuator– one that is effective, practical, and above all safe. Multichannel Singular
Spectrum Analysis (MSSA) is a step in this direction. MSSA exploits the spatial redundancy of data
by expressing a frequency slice as a structured matrix. This matrix is then projected onto its low rank
subspace, thereby removing incoherent energy. The maximum rank of a frequency slice increases
as a product of the spatial dimension half-lengths, making the rank constraint more powerful in higher
dimensions; although this power comes at a significant increase in computational cost. In this article
we address several considerations that make MSSA an effective noise attenuation algorithm. We
first introduce the algorithm and outline an efficient matrix-free implementation of MSSA that exploits
the redundancy of multi-level Hankel structures. Finally, we discuss the unique ability of MSSA to
automatically estimate the signal to noise ratio (SNR) as a function of time, space and frequency and
illustrate this ability on a dataset from northeast BC.

Introduction

Recent advances have made rank reduction a powerful and practical approach to attenuate noise in
seismic data. Early efforts to attenuate coherent and random noise via rank reduction were applied to
data directly in the time-space domain (Jones, 1985; Freire and Ulrych, 1988). Trickett (2002) greatly
advanced rank based noise attenuation by considering 2D data in the frequency-space domain. Here
a constant frequency slice is assumed to consist of a finite number of plane waves and is therefore of
limited rank. This research also introduced the concept of reshaping a 1D frequency slice of seismic
data into a 2D Hankel matrix. Reshaping, otherwise known as hankelization, prior to rank reduction,
originates from the study of dynamical systems (Broomhead and King, 1986) and has been variously
referred to as MSSA, the Caterpillar Method, and Cadzow Filtering. Trickett (2008), and later Oropeza
and Sacchi (2011), extended hankelization to the multidimensional case by reshaping a long vector
into a multi-level block Hankel matrix. Since the introduction of the MSSA algorithm there has been
much research into various aspects of its implementation (see Trickett (2016) for an overview). In this
article we address several considerations that make MSSA an effective noise attenuation algorithm.

MSSA

Multichannel Singular Spectrum Analysis (MSSA) is based on a multidimensional plane wave model
of the data. By reshaping a 1D frequency slice, xxx, into a Hankel matrix, XXX , we are able to express this
matrix as a weighted sum of k rank-1 matrices, where k corresponds to the number of distinct dips
in the data. This low rank property is readily extended to the multidimensional case by expressing
XXX as a multi-level block Hankel matrix. When data are corrupted with random noise, imposing a low
rank constraint can be used to extract the underlying signal. A straightforward method to impose a
low rank constraint is the truncated singular value decomposition. The matrix XXX is decomposed into
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its singular values and vectors, and the rank of XXX is reduced to k by the low rank projection
XXX
′
=UUUkUUUH

k XXX , (1)
where the columns of UUUk are the first k singular vectors of XXX . As a final step XXX

′
must be reshaped

into frequency slice xxx
′
via anti-diagonal averaging.

Fast memory efficient Lanczos bidiagonalization

To extract the low rank structure of the data we require only a select number of singular values and
vectors. Lanczos bidiagonalization is an efficient method to extract these elements. Similar to con-
jugate gradients, the Lanczos algorithm is a Krylov subspace method that uses forward and adjoint
matrix-vector multiplications to iteratively decompose a matrix into a small, real-valued, bidiagonal
matrix that can be quickly factorized. Lanczos bidiagonalization is incorporated into the MSSA work-
flow following algorithm 1.

Algorithm 1: Fast MSSA via Lanczos bidiagonalization

1. hankelize frequency slice: xxx→ XXX

2. factorize XXX → LLLBBBRRRH via Lanczos bidiagonalization

3. factorize BBB→UUUΣΣΣVVV T via the SVD

4. project the matrix onto a rank "k" subspace: UUUkUUUT
k BBB→ BBB′

5. multiply LLLBBB′RRRH → XXX ′

6. average along anti-diagonals: XXX ′→ xxx′

The speed of this algorithm results from the fact that steps 2 to 4 only consider a small number of
singular values, making the bidiagonal matrix BBB small and real valued. The cost of bidiagonalization
in step 2 is dominated by matrix-vector multiplication. Because the data are embedded in a Hankel
matrix it is possible to exploit this structure to write matrix-vector multiplication as element-to-element
multiplication in the Fourier domain (Xu and Qiao, 2008). This method accelerates computation
greatly by making use of the Fast Fourier Transform (FFT). Recently, Gao et al. (2013) extended
this method to multiple spatial dimensions via block Toeplitz matrices, although this required the use
of multidimensional (ND) FFTs which are less efficient for short axes. Recently Lu et al. (2015)
introduced an improved version of this method that allows for efficient 1D FFTs to be used. The steps
for the multiplication of bbb = AAAxxx are outlined in algorithm 2.

Algorithm 2: Fast Hankel matrix-vector multipliciation

1. express a frequency slice as a regularly sampled multidimensional long vector, apply the 1D
FFT and store for all future Lanczos iterations. This vector, ãaa, represents the information con-
tained in Hankel matrix AAA

2. prior to each matrix-vector multiplication embed the vector xxx into a zero-padded, structured long
vector and apply the 1D FFT, obtaining vector x̃xx (Lu et al., 2015). This step ensures that bbb = AAAxxx
mimics the multiplication of a block-circulant matrix with a vector, allowing for convolution to be
expressed as element-to-element multiplication in the Fourier domain

3. compute the element-to-element multiplication b̃bb = ãaa� x̃xx

4. take the inverse 1D FFT of b̃bb and reverse the embedding applied in step 2 to obtain bbb
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Two important features of this algorithm are that it greatly improves the efficiency of the multiplication
and it acts directly on the original frequency slice, providing a savings of computation as well as
storage. Unfortunately, the final steps of algorithm 1 require building a Hankel matrix as the factored
matrices are multiplied and anti-diagonal averaging is applied to recover the denoised frequency
slice. Recently Cheng and Sacchi (2016) introduced a fast method to multiply factored matrices from
QR decomposition and to perform anti-diagonal averaging in a single step via the ND FFT. We have
incorporated this improvement into algorithm 1; adapting it to the Lanczos algorithm, and using the
1D FFT rather than the ND FFT. The result is a fast, matrix-free implementation of MSSA that does
not require building, storing or averaging Hankel structures.

Domains and dimensions

The above modifications make the algorithm flexible enough to apply in a variety of domains (including
common source gathers, common receiver gathers, post stack volumes, common offset vectors, and
cross-spreads); and efficient enough to apply in 5D. While other noise attenuation methods must
be applied to well sampled input volumes, MSSA is able to overcome this problem by iteratively
compensating for missing input traces via

xxx j = SSSxxx0 +(III−SSS)PPP{xxx j−1}, (2)
where SSS is a diagonal sampling operator, xxx0 is an input frequency slice, and PPP{xxx j−1} projects a
frequency slice from iteration j−1 onto its low rank subspace. After N iterations the denoised data is
obtained from PPP{xxxN}.

Automatic discrimination of signal and noise

The amplitude of a singular value in MSSA represents the magnitude of coherency along its dip
(given by the singular vector). It is straightforward to visually discriminate singular values associated
with signal from those associated with noise; by definition, random noise is incoherent. To ensure
signal preservation for all positions, times, and frequencies in a survey it is necessary to automate the
discrimination between signal and noise in the MSSA workflow. Gavish and Donoho (2014) provide
a simple estimator of the cutoff between signal and noise as 2.858smed , where smed is the median
singular value. It is more difficult to estimate this cutoff when only a limited number of singular values
are known, although knowing the norm of the data as well as the norm of the available singular values
allows for a reasonable estimate to be made (Trickett, 2015).

Field data example

We demonstrate the algorithm on a 3D dataset acquired in northeastern BC. The data are contam-
inated with a mixture of random noise with intermittent regions of high amplitude, high frequency
scattered noise. The stacked data are shown in figure 1. The pre-stack data were organized into
overlapping subsurface 5D patches with CMP dimensions 25x25, and inline and crossline offset
dimensions 5x5, with a time gate of 200ms. Under this geometry, before prestack interpolation has
been applied, the input volumes consist of approximately 80% missing traces. Ten iterations of MSSA
were performed with the rank automatically determined by the distribution of singular values. Figure
2 shows the results of applying MSSA and stacking the data, with the difference panel shown in figure
3. MSSA has clearly improved the continuity of reflections while preserving weak diffracted energy.
The average SNR estimated by the MSSA algorithm for frequencies between 50-120Hz (applied to
the input stack data) is shown in figure 4. The algorithm has identified the region to the right to have
a SNR less than 1, meaning the energy of the noise is greater than the energy of the signal in this
bandwidth. Analyzing the results on prestack data (figure 5), we see an even more obvious improve-
ment to the data quality; several weak events that are difficult to discern on the input CMP are easily
identified after MSSA.
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Figure 1: Stacked in-
put data.

Figure 2: Stacked
data after applying
5D MSSA.

Figure 3: Difference
between input and
5D MSSA stacks.
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Figure 4: Avergage
Signal to Noise
Ratio estimated
from the distribution
of singular values
for frequencies be-
tween 50-120 Hz,
computed using the
post-stack data in
figure 1.

Figure 5: A CMP
gather before MSSA
(left), after MSSA
(middle), and the es-
timated noise (right).
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Conclusions

We have outlined several considerations that make MSSA an effective noise attenuation algorithm.
We reviewed two algorithmic efficiencies that make it practical to extend MSSA to higher dimensions.
Next we introduced an iterative strategy that allows poorly sampled volumes to be denoised effec-
tively, and finally we reviewed the ability of MSSA to discriminate between signal and noise as a
function of time, space and frequency. A field data example from northeast BC demonstrated the
ability of MSSA to attenuate noise while preserving weak diffracted energy.
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