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Summary

High-resolution rock-type information in a well usually requires inspection of core or cuttings by a
geologist. The problem of predicting similar descriptions in neighbouring wells from wireline logs,
producing 'e-facies’, is an old and tough problem. Training a statistical model to predict such lithologies
requires a reliable, consistent suite of lithology labels in a reasonable number of wells, plus
corresponding high-quality wireline logs. This case study describes how we formulated the prediction
problem as a machine learning task. We started with a highly regular set of lithology labels and a much
less regular set of wireline logs, to produce lithology predictions with cross-validation accuracies ranging
from 0.5 to 0.8, and averaging around 0.7. We achieved this with a gradient boosted-tree model, a type
of random decision-tree forest model.

Introduction

During the second half of the 20th century, Canstrat and Amstrat devoted substantial resources to
developing highly regularized lithologic descriptions from core and cuttings samples in thousands of wells
in North America. Their database contains robust lithological categories (‘labels’) in about 15 000 wells in
Canada and a further 45 000 wells in the United States. The labels are useful as a consistent and
reliable source of lithologic information, especially in an exploration setting. The only problem is the
relatively small number of wells that have Canstrat or Amstrat data — only about 1.5% of the millions of
wells on the continent. Canstrat would like to have similarly regular and consistent lithology labels in
every well that has wireline log data, which is inexpensive and almost ubiquitous.

This scenario is an ideal supervised machine learning task — we have a strong business need, relatively
accessible data, and high quality labels. In particular, getting such labels is usually a big problem,
because they are often expensive to acquire. (It turned out that the wireline logs were the problem.)

Taking advantage of the recent explosion in open-source machine learning software, we designed a
workflow to train a statistical model using wireline log data in wells that have Canstrat or Amstrat data,
then to use that model to predict the Canstrat labels in wells that only have wireline logs.

Method

The overall workflow is illustrated in Figure 1. Our method is best described as a pipeline, consisting of
components through which the dataset travels. The pipeline is flexible enough to handle data from
different sources, train different models, and produce results in various formats. The pipeline was
implemented in Python and depends on open source software.
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Figure 1. An overview of the workflow: we use a number of wells with logs and lithologies to train a statistical model. From the
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trained model ‘augur', we can make predictions for wells that lack lithology labels.

The first part of the pipeline handles data loading, quality checking, and conditioning. The source files for
the wireline logs are LAS files from various sources, read and processed by Agile's open source project
welly (http://github.com/agile-geoscience/welly). The product is a regularized suite of wireline logs,
constituting the feature matrix in the machine learning task, plus the lithologies, where known. The
sources for the lithologies are Canstrat DAT files, read by Agile's striplog tool (Hall 2016). The
lithologies become the label vector in the machine learning task.

The central part of the pipeline comprises the machine learning task, implemented in Python's scikit-
learn package (Pedregosa et al. 2011). The wireline logs are used as features and undergo a series of
transformations in an effort to separate each lithology in this feature space as best as possible. Only the
most complete data instances are used in training — i.e. we avoid wells with missing logs — a decision
we can afford to make because we have a fairly large amount of data. We train a boosted tree model as
implemented in the XGBoost package (Chen & Guestrin 2016). Gradient boosting of decision trees is an
idea that originated in the late 1990s in the work of Jerome Friedman and others (e.g. Friedman 1999). It
has since proven highly effective in classification problems in other domains.

The last part of the pipeline transforms the predicted labels back into lithologies, so that they can be
exported as LAS files or Canstrat's ASCIl-based DAT files.

Example

Our pilot study draws logs from a collection 73 wells on the Scotian Shelf. For the training dataset, we
used only wells that have a complete suite of high-quality wireline measurements: gamma-ray (GR),
spontaneous potential (SP), deep resistivity (RES), neutron porosity (NPHI), density (RHOB), and sonic
(DT). Of the 73 wells, 25 meet these requirements. On a current generation laptop, the time for training a
model on 800 000 data instances — corresponding to a 0.1 m sample interval — is around 10 minutes.

The results from one well are shown in Figure 2. The accuracy score is 78% for this well, and the
gualitative result is very good — the prediction looks a lot like the actual lithologies. When we look
closely at the misclassifications, we note that almost no siltstone was correctly predicted — almost all of
it was classified as shale. Along with a substantial amount of sand being misclassified as shale, these
two misclassifications account for most of the error.

We use cross-validation to assess how we are doing. This entails making predictions in wells that do
have Canstrat labels, omitting them temporarily from the training, then comparing those predictions to the
known lithologies in those wells. The 78% accuracy is at the upper end of what we achieve in cross-
validation. We see accuracies from 47% to 78%, with most wells around 70%. Generally speaking,
prediction accuracy improves in deeper stratigraphic intervals where there is more data support, and
higher log data quality due to smaller drill bit sizes and cleaner hole conditions.
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Figure 2. Cross validation. (a) True (leftmost) vs predicted lithologies in one of the wells in the Nova Scotia cohort of wells, with
some of the logs used in training. The accuracy score for this well is 78%. (b) A visualization of how the true lithologies (left)
were predicted. For example, most sandstone samples were correctly predicted. A substantial number were misclassified as
shale (false negatives). Conversely, some of the predictions of sand were actually other lithologies (false positives).

Discussion

Our results so far are encouraging, but there are a great many open questions. For example, while we
can be quite quantitative about model reliability, it's not clear yet what a useful level of certainty is.
Visualizations of uncertainty, as well as a way to include it in other workflows, will help. But this is a
general problem in subsurface analysis.

Among the many questions for further research in well-based lithology prediction are:

e Which model families are best at this task? We have had good results from random forests and
especially boosted trees, but we have not tried every possible approach.

e What sort of features are most helpful in the model? It is usually up to the researcher to select
and engineer features. There may be especially useful nonlinear combinations of features, or
spatial treatments of the data instances.

e What labels are most predictable? Lithology is useful, but it's possible that other properties, such
as porosity, grain-size, or saturation, or combinations of properties, are more predictable.
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e How general can the model be? Is a model that has seen a large number wells from many
different basins capable of predicting lithologies in wells that are far outside the training cohort?

e« How can we incorporate updates to the labels — new descriptions in old wells, new wells, or
human 'hints' to the best prediction — to update and improve the model?

Conclusions

e We have built a flexible machine learning pipeline that predicts Canstrat-like lithologies in wells
that have only wireline logs.

 We implemented our pipeline in Python using open source software and public wireline log data.

e The pipeline has the following components: read the Canstrat lithology data with striplog
software, read and condition the wireline log data with we 11y, engineer features with scikit-
learn, train a gradient-boosted trees model with XGBRoost, predict lithologies with the trained
model.

e The pipeline achieves a prediction accuracy of about 70% in cross validation.

e This highly repeatable workflow makes lithologies consistent with existing Canstrat lithologies
available in a much larger number of wells.
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