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Summary  

Identifying facies for classification for a seismic inversion project is an important step where one balances  
computational effort and the quality of the results. We propose a new measure to quantify the suitability of 
a given facies partition based on information theory. The results depend on a user-selected cutoff, and we 
propose a reasonable value for this constant. We also show the analysis to be a useful aid for quantitative   
comparison of various possible facies partitions from a synthetic data example.  

 

Introduction 

Classification of rock type is central to any subsurface characterization. Each discipline on a reservoir team 
will have a particular strategy based on their goals and available data, but in general there are more facies 
discernable in geological and petrophysical data than can be resolved from elastic parameters.  
Geophysicists need to incorporate these goals and construct meaningful 3D reservoir images, accounting 
for noise and the inherent limitations of seismic elastic inversion. The analysis of various facies partitions is 
generally carried out using petrophysical and core data, and forms the basis of the 3D classification to be 
applied after a seismic inversion has been performed. There are specific inversion routines that also 
require this analysis as an input to the inversion process; for example see Saussus and Sams (2012) and 
Kemper and Gunning (2014).   

Choosing a facies classification traditionally has been done deterministically using expert judgement, but 
consistency can be improved by employing quantitative measures. An overview of unsupervised and 
supervised techniques can be found in Zhao et. al. (2015). We address the supervised situation in which a 
large number of facies are identifiable and an optimal grouping is desired. Grana et. al.(2012) demonstrate 
the use of heirarchical agglomerative clustering.  This method starts from an exhaustive set of facies and 
gradually prunes it while tracking the ‘distance’ between merged facies as it proceeds. The user must make 
a judgement as to which distances are too large to accept before finalizing the classification set. We take a 
different apporach and employ entropy and mutual information, measures originating from signal analysis 
and having application in statistical reservoir characterization (Avseth et. al. 2005). The concept of mutual 
information provides  a framework to measure changes in facies partitions and make it possible to define 
what can be considered optimal. The use of entropy has gained recent attention to monitor information loss 
in the upscaling process, necessary for geostatistical simulation but also relevant for seismic and well-log 
scale comparisons (Babak et. al. 2013, and Lajevardi and Deutsch, 2016).  

 

Method 

Defining a facies partition as a set of mutually exclusive subsets of lithologies, ℱ = [f1, f2, … , fn] , we can 
calculate the entropy from (Papoulis and Pillai, 2002)  

 

H(ℱ) = − ∑ PklnPk             (1) 
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where Pk is the probability of facies subset ‘k’. The mutual information between the facies partition ℱ and 
the seismic attributes that will be used to image the facies (the vector z) can be calculated as 

 

I(ℱ; z) =  H(ℱ) −  H(ℱ|z) = ∑ Pk ∫ p(z|k) ln
p(k,z)

p(z)P(k)
                           (2) 

 

where the vector of seismic attributes in general comprises elastic properties such as acoustic impedance 
(AI) and Vp/Vs ratio. We seek a formulation for determining a ‘good’ partition (grouping or splitting of facies) 
that reflects our intuitive understanding of how well we can image these quantities. It is worth mentioning 
that while the above calculations are not complex, they do require the construction of a probability density 
function of seismic attributes per facies in advance usually from logs and the approximate nature of this 
construction (depending upon available data) should be kept in mind.  

 

Adding new facies i.e. splitting existing groups always increases the mutual information content, unless the 
newly distinct facies are completely undetermined by the seismic data. This near-monatonic behaviour 

makes I(ℱ; z) by itself not a useful quantity to maximize. Conversely H(ℱ| z) is a measure of the 
uncertainty of the facies partition given the seismic data; in effect a measure of error. As the partition 
includes more facies this quantity also increases except in the rare circumstance that the seismic data 
completely images the new facies type. What we are after is the balance between these factors: improving 
the information content of our facies partition, but not doing so at the cost of bringing in facies that are 
poorly determined by our data, as the latter consumes time and effort while producing potentially 
misleading results. Therefore we propose maximizing the following ‘Partition Quality’ function: 

 

PQ(ℱ) =  I(ℱ; z) − ηH(ℱ| z)                                                       (3) 

 

in which η is an appropriately chosen constant. We see that for a single facies group PQ=0, implying that 
any non-trivial set of facies must satisfy PQ>0 to be acceptable. When selecting a new partition over an 

existing one, the criteria above implies  ΔPQ > 0 or   ΔI(ℱ; z) > ηΔH(ℱ| z). Therefore, each new partition 
must deliver incremental information that amounts to at least a fraction η of the uncertainty that is created. 

By setting η higher, we have more stringent standards on what is acceptable, but risk not imaging facies 
that nevertheless might help an interpreter. A natural guess might be η = 1, but we have found this too 

restrictive. After some experience we have found η = 0.25 to be a more reasonable estimate. We point out 
that the analysis is non-contextualized, and the spatial inter-dependence of facies is another important 
consideration, beyond the scope of this study (Lindberg et. al., 2014).       

Example 

We present a synthetic example that retains an element of realism using a Landsat 7 satellite image of the 
Yukon Delta, provided to the public domain by the USGS. The image of a portion of the delta with RGB 
colours has been constructed from different wavelengths imaged by the satellite. These colours correspond 
to specific surface characteristics, and for our purposes will be considered facies. We select 6 facies 
(colours) and classify the image accordingly in Figure 1; this will be considered the ‘true’ facies map. The 
analogous seismic facies inversion problem consists of taking one of the RGB components (in this case the 
blue band component) and carrying out a classification based on that limited information. That is, the 
elastic properties in seismic inversion are an imprecise data set to classify all petrophysically known facies, 
and in our example the blue band component is an imprecise dataset with which to classify all facies 
‘known’ to be present in the full RGB satellite image. Figure 1 centre shows the blue band amplitude and 
the right hand side of this figure shows the facies conditional probability density functions for the blue band 
amplitude. We see overlap between all facies, but especially in the the light green, dark green and dark 
blue facies.    
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 Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

facies 1,2,3,4,5,6 1,2,3,6,7  1,2,6,8 1,2,9 9,10 11 

grouping initial state 4+5  7 3+7  8 6+8  9 1+2  10 9+10  11 

Table 1: The description of how each partition was constructed in the study. Numbers correspond to colours plotted in 
Figure 3. 

 

We set out 6 partitions by iteratively attaching a single facies to another chosen as optimal according to the 

partition quality function. The results are described in Table 1 and the partition quality using η = 0.25 is 
plotted in Figure 2 (left side), where it can be seen that partition 3 is considered optimal. This result agrees 
with intuition as partition 3 has grouped the original light green, dark green and dark blue facies (4,5,3) 
together, which are poorly resolved from the blue band data. Figure 3 (left hand side) shows a maximum 
likelihood classification of the blue band data using partition 1, while the centre and right hand images 
show the same for partitions 2 and 3. Examining Figure 3 we see that partition 1 has speckled green and 
dark blue facies classified somewhat misleadingly across the entire area, whereas with partition 3 we have 
what appears to be a reduction in noise by grouping the poorly resolved facies. Interestingly, we can see 
examples where this is beneficial, but also instances where the grouping is detrimental. For example, the 
dark green channel in the lower left side of the true facies image can be most readily identified as distinct 
from the brown facies in partition 3. However, we do see that some of the larger dark blue features can be 
distinguished from dark green facies in the partition 1 image, something that is obviously not possible for 
partition 3. This gives us reason to be cautious with our approach, as all facies groupings will result in some 
information loss, and we are trying to find a reasonable balance. By experimenting we found when η was 
reduced to 0.1, the optimal partition preserved the dark blue facies as distinct. We also note that maximum 
posterior classifications for Figure 3 give a different perspective to the example shown, but due to the 
dominance of brown facies, the maximum likelihood classifications were considered more instructive.   

                                   

       

 

Figure 1: At left is the classified ‘true facies’ picture (axes are pixel indexes, each 30m x30m). Centre is the blue band 
amplitude, used as a proxy for a seismic  property. At right we have the probability density functions for the blue band 
amplitude, conditional to each of the 6 initial facies in partition 1. 
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Figure 2: At left is the partition quality function calculated over a sequence of possible facies partitions (see text for 
details of groups). Centre we have the probability density functions for the blue band amplitude, conditional to each of 
the facies in partition 2 and at right we have the same for partition 3. 

 

     

 

Figure 3: Maximum likelihood classifications of facies based solely on the blue band amplitudes for different partitions. 
From left to right we have partitions 1 to 3 represented here. 

 

Conclusions 

We have proposed a method to compare the efficiency of different facies parameterizations before 
engaging in subsequent seismic inversion work. The results agree with intuition and provide a quantitative 
measure for the comparison. The results depend upon a user specified cutoff (η) that reflects our tolerance 
for uncertainty in our classifications, and we have proposed 0.25 as a reasonable value based on tests on 
synthetic data. Spatial dependence of the facies is not incorporated in this type of analysis, which can alter 
how visible facies are after classification.  

 

Acknowledgements 

We would like to thank Maximo Rodriguez, Luis Cardozo, Mike Pesowski, R.J. Vestrum, Mark Danyluk and 
Andrew Nuyten for helpful discussions and Michel Kemper and Mark Sams for constructive reviews of the 
abstract. 

 

 

 

 

 

 



  

 
GeoConvention 2017 5 

 

 

References 

 

Avseth, P., Mukerji, T. and Mavko, M.,2005, Quantitative Seismic Interpretation: Cambridge University Press. 

Babak, O., Manchuk, J.G. and Deutsch, C.V., 2013, Accounting for non-exclusivity in sequential indicator simulation of 

categorical variables: Computers and Geosciences, 51,118-128. 

Grana, D., Pirrone, M. and Mukerji, T., 2012, Quantitative log interpretation and uncertainty propagation of petrophysical 

properties and facies classification from rock-physics modeling and formation evaluation analysis: Geophysics, 77, no.3, WA45-

WA63. 

Kemper, M. and Gunning, J., 2014, Joint impedance and facies inversion - seismic inversion redefined: First Break, 32 , no.9. 

89-95. 

Lajevardi, S. and Deutsch, C.V, 2016, A measure of facies mixing in data upscaling to account for information loss in the 

estimation of petrophysical variables: Petroleum Geoscience, 22, 191-202.  

Lindberg, D.V., Rimstad, E. and More, H. 2014, Identification of facies from multiple well logs accounting for spatial 

dependencies and convolution effects: 76
th
 Conference and Exhibition, EAGE. 

Papoulis, A., and Pillai, S.U., 2002, Probability, random variables and stochastic processes: McGraw Hill. 

Saussus, D. and Sams, M., 2012, Facies as the key to using seismic inversion for modelling reservoir properties: First Break, 

30, no. 7, 45-52. 

Takahashi, I., Mukerji, T. and Mavko, G. 1999, A strategy to select optimal seismic attributes for reservoir property estimation: 

Application of information theory. 69thAnnual International Meeting, SEG, Expanded Abstracts, 1584-1587. 

Zhao, T., Jayaram, V. Roy, A. and Marfurt, K.J., 2015, A comparison of classification techniques for seismic facies recognition: 

Interpretation, 3, no4, SAE29. 


