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Summary 

Many scientific images — false-colour rasters or bitmaps — are published without obvious or easy 
access to the data that was used to make them. We present a semi-supervised algorithm, implemented 
in Python, to recover data from such images without a priori knowledge of the colourmap. We use image 
processing to detect the data area, then quantize the colours in the input image using k-means 
clustering. Using a novel approach, we apply heuristics to order these colours into a colour table, with 
which we can look up the data values. Once we have the data, we can recolour the image using any 
colourmap, or load it to a seismic interpretation package. 

Introduction 

Scientific publications are often not accompanied by the data required to reproduce their results. The 
data problem seems to be especially bad in applied sciences, such as exploration geophysics, where 
authors may feel oppressive corporate or cultural requirements to keep data and algorithms proprietary. 
We highlighted this problem in a GeoConvention 'unsession' in 2014.  

But there is a large amount of 'pseudo-open' data: images of data that are conceptually the same as 
data, but practically different because images are difficult to load into a seismic interpretation package. 

We have devised a method to recover data from some scientific images, especially seismic data, with no 
knowledge of the colourmap and usually with no input from the user. 

 

Figure 1. Left: the original image, in this case a dataset coloured with a known colourmap. Right: every pixel in the image 

plotted into RGB space. It seems to form a line representing the colourmap, but the points are not in order. 
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Plotting any false-coloured image (i.e. a dataset plotted with a colourmap) reveals the colourmap (almost 
always) forms a continuous line in RGB space, as shown in Figure 1. This line represents the linear 
sequence of colours that is the colourmap. However, the points are not in order — if we want to use the 
apparent line as a lookup table, we have to organize the points into sequence first. In our example, we 
can then map dark blue to a value of 1, light grey to 0, and dark red to -1, and everything in between. 

It turns out this is not as easy as it might appear. 

Method 

In many cases, there is little to be done. If the colourmap is perceptually linear, essentially just a ramp 
from dark to light (or vice versa), then it is enough to, say, convert it to greyscale. On the other hand, if 
the colourmap is reproduced with the image, and is of high enough resolution, then recovering the data 
is also relatively straightforward. Tools like yoink exist to simplify the process of isolating the data and 
using the colourmap to recover the data from the image. 

But in a large number of cases, especially for seismic data, the colourmap is not perceptual and is not 
present in the image. Our algorithm for handling those cases is as follows: 

1. The image may contain non-data (annotations, marginalia, etc). We use scikit-image (van der 
Walt et al. 2014) to find and isolate the data area in the image. The steps are: threshold, filter 
features by size, keep the largest feature, and finally close holes. 

2. We use unsupervised K-means clustering in scikit-learn (Pedregosa et al. 2011) to quantize the 
image to some reduced number of colours, e.g. 128. This provides the colours in the colourmap. 

3. Using an original method, we heuristically find the start of the colourmap, then step over the 
colour quanta by solving a modified traveling salesman problem using the LKH solver (Helsgaun 
2009). This sorts the colours and, together with the distances between quanta, results in the 
estimated colourmap. 

4. To transform colours into scalar values, we look up the image pixels against a k-d tree of the 
quanta. This results in a 2D array of scalars representing the seismic data. 

5. Finally, we save a SEG Y file of the amplitude data, and optionally recolour the image using a 
perceptual colourmap. 

Depending on the size and quality of the original image, this process often works with default settings. 
But some judgment helps with the colour reduction in step 2, and with the locus crawling in step 3. 

Some things are not easy to cope with, however: 

 The magnitude of the samples in the original image is impossible to guess. In seismic data at 
least, it is not usually important. 

 The polarity of the data is impossible to guess. Our heuristic for the 'most positive' end of the 
colourmap is: 'the point with fewest neighbours that is closest to black'. In some cases, this will 
result in the polarity being reversed. 

 Data from very small images, or images that have been subjected to lossy compression (almost 
all JPEG images), can usually not be recovered. This affects many scientific images 
unfortunately. 

 Annotations inside the image area, if they are in a colour that appears in the colourmap, cause 
problems. If they are in a different colour, they can potentially be handled. 
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Example 

To continue the example we started with, Figure 2 shows a simple example from the F3 dataset, offshore 
Netherlands (dGB and TNO, 1987). We made the data image from the seismic data, so we know the 
underlying data and the colourmap exactly. The middle plot shows the recovered colourmap plotted into 
RGB space. The uneven spacing is usually a result of the roughly Laplacian (or double exponential) 
distribution of amplitudes, but it's not important because the colour quanta were fit to the data — so 
these colours are the 'best' colours to represent the actual data distribution. 

The result is qualitatively very good, certainly interpretable. The RMS error is 0.06 and seems to be a 
global scaling error, rather than a local misfit error. That said, unless we can improve the error, it seems 
wise treat the amplitudes as relative and probably not quantitatively reliable. 

 
 
Figure 2. Left: the original image. Middle: the recovered colourmap plotted as a locus in RGB space (the black point is at the 

lower left, white at the upper right; the other corners of the cube represent the primary and secondary colours). Right: The 
recovered data, normalized here to [-1,1], displayed with the known colourmap. 

Conclusions 

Image are data. With the aim of making scientific claims more reproducible, we hope this work makes it 
easier for scientists to recover scalar data from scientific images, even when the colourmap is unknown. 
We implemented an algorithm in Python to perform data recovery on images, especially of seismic data, 
without knowing the colourmap. With some caveats, the algorithm performs well enough in most cases to 
enable data to be converted to SEG Y data and interpreted in standard software packages. Our code is 
open source and available at http://github.com/cseg/2017-hall-niccoli. 
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