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Summary 
Elastic full waveform inversion (FWI) is inherently more ill-posed and non-linear than its acoustic 
counterpart owing to the increased model space and the introduction of more complex wave 
phenomena. Elastic media can be characterized by as few as three parameters under simplifying 
assumptions (i.e. isotropy, perfect elasticity). Parameters are unlikely to be uniquely resolvable as per-
turbations in multiple parameters can generate similar attributes in the data; this is known as parameter 
trade-off. The data-misfit Hessian can mitigate parameter trade-offs; however, its explicit computation is 
not feasible for problems of realistic size. Early studies in FWI examined analytical diffraction patterns 
generated by localized perturbations to evaluate parameter trade-offs. While this approach has been cor-
roborated by empirical results, the analysis is somewhat qualitative. As multi-parameter inversion be-
comes more prevalent in FWI applications, addressing the resolvability of individual parameters will be 
essential. In this study we perform synthetic inversions to assess the impact of model parametrization on 
convergence rates and resolvability.  

Introduction 
Full waveform inversion is a data fitting technique that seeks to minimize a difference measure between 
observed and synthetic data (Tarantola, 1986; Mora, 1987; Virieux and Operto, 2009). Recent advances 
in computational hardware and high performance computing have led to a resurgence in FWI research. 
FWI is an ill-posed inverse problem owing to the non-uniqueness of inverted solutions. The ill-posedness 
is exacerbated when multiple independent parameters are inverted for. This study presents preliminary 
work intended to further understanding on multi-parameter FWI in the absence of the Hessian. We out-
line FWI theory before presenting results from synthetic inversions. 

Theory 
FWI can be represented as a P.D.E. constrained optimization problem of the form 

Given an estimated model m, we seek to minimize the objective function J(m) subject to a P.D.E con-
straint. u0 denotes the observed data and u(m) denotes synthetic data generated using estimated model 
m. L(m) represents a linear differential operator that characterizes the acoustic or elastic wave-equation. 
The optimization problem can be solved via linearized inversion (Tarantola, 1986; Mora, 1987; Pratt, 
1999). A second order Taylor expansion of J(m) about m results in 
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minimize

m
J(m) =

1

2

ku(m)� u0k2

subject to L(m)u = f .



where we have defined the gradient vector g and the Hessian matrix H. In the true Earth model, the de-
rivative of the objective function with respect to m is zero. In this scenario, the previous expression can be 
rearranged to solve for a model perturbation. 

For problems of realistic size, direct computation of the Hessian matrix (or its inverse) is not computational-
ly feasible. The Hessian is often replaced by a preconditioning matrix P, chosen such that it can be readily 
computed whilst retaining some characteristics of the Hessian. Finally, an iterative update rule is given by  

where k denotes the iteration number. 𝝼k is a scalar value that signifies the step length.  

The role of parameter trade-off becomes apparent examining the multi-parameter case involving two 
generic parameters m1 and m2. 

The ideal model updates are linear combinations of the individual gradients with coefficients defined by the 
inverse Hessian. By assuming a steepest descent direction (i.e. Hessian is taken as the identity matrix), 
the model updates do not capture the aforementioned linear combination. As the Hessian is rarely acces-
sible, an alternative approach to minimizing parameter trade-off, would be to select m1 and m2 such that 
the off-diagonal components of the Hessian are zero or minimal (in comparison to the diagonal compo-
nents). Reparameterization is investigated in the following section through synthetic inversions. 

Synthetic test: SEG/EAGE Overthrust model 
We perform inversions on a 2D section of the SEG/EAGE overthrust model vp model (P-wave velocity). A 
vs (S-wave velocity) model is generated by assuming vp/vs = 1.76 throughout the model; a homogeneous 
density model is used (ρ = 1000 kg m-3). Initial models are obtained by convolving the true model with a 
2D Gaussian kernel (𝜎x = 𝜎z = 625 m). Each inversion utilizes 96 explosive sources (∆xs = 100 m, zs = 50 
m) recorded at 264 receivers along the surface (∆xr = 75 m). The source wavelet is a Ricker wavelet with 
a dominant frequency of 5 Hz. Each inversion implements an L-BFGS algorithm with a backtracking line-
search (Nocedal, 2006) and runs for 30 iterations. 
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Figure 1: 2D section of the SEG/EAGE overthrust vp model. 



The inversions are performed for four different model parameterizations: seismic velocities (vp, vs), Im-
pedances (Ip, Is), Lamé parameters (λ, µ), and slownesses (pp, ps). Where applicable, the p and s sub-
scripts represent the associated P and S-wave variants of each parameter. 
  
We compare the convergence properties for each different parameterization. Figure 2 displays the con-
vergence of data misfit along with model errors, where model error is defined as  

In each case, the parameter sets are converted into seismic velocities prior to comparison.  
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Figure 2: Convergence plots of data misfit and model errors for various model parameterizations. 
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Figure 3: Inverted vp and vs models after 15 iterations for various model parameterizations.



After 30 iterations, velocity and slowness parametrizations have reduced the misfit to ~10% of the initial 
value whereas for impedance and Lamé parameters, a reduction to ~20% of the initial value is achieved. 
The difference arises from the inability of the impedance and Lamé parametrizations to invert deeper 
parts of the model (figure 3). Slowness shows a greater reduction in the data misfit over the velocity pa-
rametrization, owing to the more accurate vp model inverted. The impedance parametrization displays 
the slowest reduction rate in model errors. The effect of parametrization is more pronounced in the in-
verted vp model errors.The slowness parametrization dramatically improves the rate at which the vp 
model error is reduced when compared to all other parametrizations. All parametrizations display various 
rates at which vp model errors are reduced relative to vs model errors. For example, vp model errors re-
duce at a noticeably slower rate than vs model errors. Velocity and Lamé parametrization show more 
comparable model error reduction update rates for vp and vs. 

Conclusions 
We have performed a series of synthetic inversions to evaluate the role of model parametrization in mul-
ti-parameter FWI. Changing the model parametrization resulted in varying convergence rates for the data 
misfit. Slowness and velocity parametrizations outperformed impedance and Lamé parametrizations. By 
converting the parameter sets to seismic velocities we observed variable behaviour in the convergence 
of vp and vs model errors. The slowness parametrization rapidly reduced vp model errors and excelled at 
imaging deeper parts of the model. In future work, it will be important to compare traditional diffraction 
pattern analyses with more direct approaches presented here to form a more complete understanding of 
parameter trade-offs. By combining such approaches, it may eventually be possible to identify optimal 
parametrizations. The acquisition geometry influences the distribution of sampled by the data and will 
also need to be considered in future work. 
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