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Summary  

The signal-to-noise ratio (SNR) enhancement plays the key role for subsequent seismic signal 

processing and interpretation. In this article, we propose an efficient and appropriate dictionary learning 

strategy to realize denoising. It learns features (basis functions) for seismic signals from a smaller portion 

data by an unsupervised non-parametric Bayesian method. In this dictionary learning strategy, an Indian 

Buffet Process (IBP) prior is used to promote sparsity and infer an adaptive number of atoms. So, the 

size of dictionary is no more set a prior. There is no parameter adjustment in the process of dictionary 

learning thanks to the non-parametric Bayesian method, which makes it easier to be applied. Tests on 

synthetic and real datasets demonstrate that this proposed strategy achieves superior denoising 

performance in terms of SNR enhancement. 

 

Introduction 

Sparse representation has shown to be a very powerful model for signal denoising,  recently it has drawn 

considerable attention in seismic data processing (Ma et al., 2010; Zhu et al., 2015; Chen, et al., 2016).  

The basic assumption of this model is that seismic signals can be represented if combined with an 

appropriate dictionary. Specifically, solely a few columns (also referred to as atoms) of the dictionary 

capture most signal features. Most algorithms formulate the dictionary learning as an optimization 

problem (Engan et al., 1999; Aharon et al., 2006; Siahsar et al., 2017; Chen, 2017; Hou, et al., 2017). 

They seek to match the dictionary to the signal of interest and simultaneously encourage a sparse 

representation. These methods have achieved good performance for denoising, but they still have 

several limitations. They may require the knowledge of the noise level, the size of the dictionary or the 

sparsity level. To mitigate these limitations, non-parametric Bayesian approaches have been introduced  

(Zhou et al., 2012; Zhang and Van der Baan, 2018).  All involved parameters and their distributions are 

estimated from the data using a Bayesian framework. In this article, we use a non-parametric Bayesian 

dictionary learning method by employing the Indian Buffet Process (IBP, Griffiths and Ghahramani, 2006) 

for sparse representation of seismic signals. An IBP prior is adopted to infer the size of dictionary. The 

IBP defines a probability distribution of sparse binary matrices with a potentially infinite number of rows, 

which is the key to learning a dictionary for sparse representation with adaptive size. An approximation to 

the posterior distributions is manifested via Gibbs sampling (Albert and Chib, 1993; Dang and Chainais, 

2018), yielding an ensemble of dictionary representations. In this non-parametric Bayesian method, the 

dictionary is directly learned from underlying noisy data. Furthermore, the noise variance need not be 

known, and the noise can be non-stationary. These merits are deemed an important advantage over 

other dictionary learning methods. 
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Method 

Dictionary learning consists of estimating features (basis functions) from observed data by invoking 

sparsity. In dictionary learning, the noisy data Y are modeled by: 
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The IBP based non-parametric Bayesian model is expressed as (Dang and Chainais, 2018): 
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where 
iy is a column vector of dimension P , 1,...,i N= , e represents the element-wise or Hadamard 

product. ( )P KI I represents a ( )P P K K   identity matrix. The representation coefficients are defined as 

, , ,k i k i k i=w z s , the K-dimensional vector
iz consisting of  0 and 1 (  0,1

K

i z ) encodes which of the K

columns of D are used to represent 
iy ; 

K

i s ¡ are the values of the coefficients. The sparsity properties 

of W are induced by the sparsity of  1,...,
K N

N

= Z z z ¡ thanks to the IBP prior which will be discussed 

later.  is modeled by a prior with a Gamma distribution ( ~Gamma(a, b)), a and b are set to 1 in this 

paper. 
kd , 

is and 
iε are  assumed to follow Gaussian distributions as priors for modeling convenience. 

( , )μ ΣN represents the Gaussian distribution with expectation  and covariance  .  Both 
s and 

follow a gamma distribution, that is 
s ~ ( , )c d ,  ~ ( , )e f  (Zhou et al., 2012),  , , ,c d e f are 

parameters which describe the Gamma distribution. They are all set to 
610−
as is done usually to make 

them non-informative (Tipping, 2001).   

The posterior distributions (after observing the data) of the model variables are estimated by a Gibbs 

sampling strategy (Dang and Chainais, 2018). The final values of the variables , , , , ,andsZ D S    are 

obtained after a number of iterations on sampling. Then, the denoised patch matrices can be obtained by 

ˆ =X D(Z S)e . 
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Results 

We test the method first on a 2-D synthetic example, as shown in Figure 1. The sample interval of this 
data set is 1ms. The dominant frequencies of the three events are 35 Hz, 30 Hz, and 25 Hz, respectively. 
We add strong white Gaussian noise to the synthetic model. The signal-to-noise ratio (SNR) of noisy 
record is -10 dB as shown in Figure 1b. The signal-to-noise ratio is defined by the power ratio. We 
compare the proposed method with K-Singular Value Decomposition (KSVD) which has shown success 
in seismic denoising (Zhu et al., 2015). In the proposed method, P is 64 and the total number of 
overlapping patches N is 14761. The number of iterations is 20. The variables are initialized randomly 
from their respective prior distributions. The patch size and the number of iterations for the KSVD are the 
same as the ones used in the  proposed method. The size of dictionary K used in the KSVD is fixed as 
100. The results of two methods are shown in Figure 2. The laterally coherent features are better 
enhanced by the proposed method, and there is less residual noise compared with the KSVD method. 

Next we verify the performance of the proposed method on a real surface microseismic record with a 

sample interval of 4 ms, which is shown in Figure 3(a). In this example, we also compare the proposed 

method with the KSVD method. P is 64 and the total number of overlapping patches N is 12325. The 

number of iterations is 40. The patch size and the number of iterations for the KSVD are the same as the 

ones used in the  proposed method. The size of dictionary K used in the KSVD is fixed as 100. The results 

of two methods are shown in Figure 3(b) and 3(c), respectively. The result of the proposed method is much 

better than using the KSVD method in terms of signal recovery and noise suppression. 

Finally, the proposed method is applied to a real seismic section with a sample interval of 4 ms, which is 

shown in Figure 4(a). Again the KSVD method is applied for comparison. The results of two methods are 

shown in Figure 4(b) and 4(c), respectively. Both the KSVD and proposed methods enhance the continuity 

of the reflectors but the proposed method better eliminated residual high-frequency noise (red rectangle). 

 

 

 

 

Figure 1: The synthetic model. (a) Noise-free data. (b) Noisy data (SNR=-10 dB) contaminated with 
strong white Gaussian noise.     
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Figure 2: Result after (a) the KSVD, (b) the proposed method. 

 

 

 

 

Figure 3: Real surface microseismic data example. (a) Real surface microseismic data . Result after (b) 
the KSVD  method (the size of dictionary is 100), (c) the proposed method (the size of  dictionary is 12). 
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Figure 4: Real seismic section example. (a) Real stacked section . Result after (b) the KSVD method (the 
size of dictionary is 100), (c) the proposed method (the size of  dictionary is 15). 

 

Conclusions 

The Indian Buffet Process based Bayesian non-parametric model learns an appropriate dictionary from 

noisy data. It provides a very useful tool for effective signal extraction. The size of the dictionary as well as 

the other parameters of this model are simultaneously inferred by the Gibbs sampling strategy. The results 

of synthetic and real data examples verify the validity of the proposed method for both noise reduction and 

signal recovery. 
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