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Summary

Hankel-matrix rank reduction principles lead to effective and flexible reconstruction techniques in
seismic processing. The method relies on the predictability of the seismic signal for equally spaced
channels. However, given the logistics of the seismic acquisition operation, sampling the wavefield
following a regular survey can be challenging. We introduce an inversion approach that reconstructs
and denoises the observed data with irregular coordinates to a desired regular grid. The objective
function considers a low-rank constraint. We propose using the Projected Gradient method to opti-
mize the objective function.

We present synthetic and field test. From the experiments, we find that IMSSA outperforms the clas-
sical MSSA reconstruction method with the reassignment of traces. Such improvement is assigned
to the use of the real, observed coordinates, instead of an ideal geometry, to reconstruct the dataset.

Introduction

Seismic reconstruction is a primary step in seismic data processing workflows. There is a variety
of algorithms available in the industry, utilizing concepts ranging from the wave equation to signal
processing tools. Methods considering signal processing tools are most frequently used by industry.
They can be classified into three sets. First, those algorithms using transforms, such as Fourier
(Zwartjes and Gisolf, 2006; Trad, 2009), Radon (Verschuur and Kabir, 1995) or Curvelet (Hennenfent
et al., 2010; Naghizadeh and Sacchi, 2010). Second, techniques considering prediction error filters
(Spitz, 1991; Naghizadeh and Sacchi, 2007). Finally, methods that use rank reduction of matrices
(Trickett, 2008; Oropeza and Sacchi, 2011; Chen and Sacchi, 2015) or tensors (Kreimer and Sacchi,
2012; Kreimer et al., 2013).

Rank-reduction reconstruction algorithms assume that adequately sampled, noise-free data can be
represented via a low-rank array. Missing data and additive noise increase the rank of the matrix or
tensor describing the data. In particular, MSSA assumes that given a seismic volume with k dipping
events, the Hankel matrix of each frequency slice presents k linearly independent vectors. To com-
pute the rank-reduced array, standard MSSA resorts to the Eckart- Young theorem by using truncated
Singular Value Decomposition. To obtain the reconstructed seismic data, one should average along
the anti-diagonals of the low-rank matrix. A drawback to this method is that the input data should
be regularly distributed. Then, the process starts by reading seismic traces and allocating them to
a regular grid, before doing the MSSA reconstruction. As a result, the traces provided to the MSSA
algorithm contain coordinates that have been moved from their observed position to the center of a
cell of the desired output geometry.

This abstract discusses a modification to the MSSA method to cope with irregular data, avoiding the
introduction of spurious errors by binning. We propose an iterative rank reduction algorithm based on
a Projected Descent method to approximate the reconstructed traces by minimizing the error between
observed and approximated data. Finally, we show synthetic and field data examples.
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Theory

In seismic processing, the reconstruction problem aims to recover a regularly and completely sam-
pled volume Dr, from a set of irregularly distributed and incompletely sampled dataset Dobs. That is,
one intends to describe the wavefield such that

ΦDr ≈ Dobs . (1)

If the observed data were regularly gridded, the operator Φ would represent the adjoint of the sam-
pling matrix. In reality, given the complexity of the seismic acquisition, the observed dataset is not
regularly gridded. Then, one needs to analyze the operator Φ in greater detail.

The observed seismic data can be described as a combination of a vector of measurements and a
set of irregular coordinates. However, the reconstructed traces present a regular geometry. Then, we
determine a transformation of the regular grid to the exact field position. Such transformation is the
operator Φ in Equation 1. In this abstract, we present 2D reconstruction and the transformation is a
linear interpolator, but one could opt for other interpolation techniques.

The reconstruction problem described in Equation 1 is underdetermined. To find a stable solution
one poses the problem as the constrained optimization

min
Dr

J = ‖ΦDr−Dobs‖2
F ,s.t. Dr = S{Dr} , (2)

where Dr is the approximated volume or unknown, Dobs is the observed data, and F is the Frobenius
norm. The result is constrained to those solutions whose Hankel matrix are low rank. We enforce the
low-rank constrain via the SSA rank-reduction filtering method

S{Dr}= ARH{Dr} , (3)

where H is the Hankelization operator, R is a rank reduction operator, and A represents the anti-
diagonal averaging of the approximated low-rank matrix.

To solve for Dr, we propose a Projected Gradient algorithm (Cheng and Sacchi, 2016; Bolduc et al.,
2017). Then, the iterative scheme to solve Equation 2 is

D̂r = Di−1
r − sΦ

∗ (
ΦDi−1

r −Dobs
)

(4)
Di

r = S{D̂i
r} , (5)

where s is a step size, Φ is the interpolator operator, and Φ∗ its adjoint.The interpolator operator
calculates the estimated value at the observed position as a weighted linear combination of the
approximated values in the regular nods.

To conclude, the proposed algorithm evades the storage of a binned dataset, which includes a sig-
nificant percentage of zero-traces. Besides, instead of modifying the input data, IMSSA reconstructs
directly from the observed traces. Finally, as the regularization of the data is calculated iteratively, the
algorithm completes the unfilled positions gradually, avoiding the introduction of significant amplitude
and phase errors.

Examples

We test the method with a synthetic example. We model 40 traces, we introduce jittering in the
coordinates, and randomly decimate 50% of the traces. Finally, we include random Gaussian noise
with a SNR= 1.2 dB. The reconstruction is calculated via IMSSA in the frequency range [1-60] Hz,
step size s = 0.5, and ideal rank 2. Figure 1(a), shows the ideal, regular traces. Figure 1(b) shows the
decimated, irregular traces. These traces represent the observed traces. Finally, Figure 1(c) depicts
the result of the reconstruction via IMSSA.
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Figure 1: Reconstruction of linear synthetic events. (a) Original data. (b) Randomly decimated with
erratic noise. (c) Reconstructed data via the proposed IMSSA method.
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Figure 2: Signal-to-noise ratio for
MSSA and IMSSA.

Next, we compare the reconstruction quality between IMSSA
and the standard MSSA with re-assignment of traces. The
comparison is based on the output signal-to-noise ratio of
the reconstructions. Figure 2 shows the results for both
methods for different percentages of available traces. We
conclude that IMSSA consistently outperforms MSSA.

We also tested the algorithm with field data from a survey on
a heavy oil field in Alberta, Canada. We extract one receiver
line from a given shot gather and randomly decimate 40% of
the available traces. Following, we reconstruct via IMSSA.

Figure 3(a) shows the observed data. Figure 3(b) depicts
the randomly decimated traces. Figure 3(c) shows the re-
sults after reconstruction via IMSSA. The results show that
the method does not create spurious reflections. Also, the
data show more continuous events and increase the signal-
to-noise ratio.

Conclusion

Many seismic reconstruction techniques require regularly
binned input data, which introduces spurious errors to the observed traces. In this abstract, we
propose reconstructing seismic data from the irregular coordinates to a regular grid, without binning.

We present an objective function including an interpolator operator that approximates the value of
the reconstructed volume to the observed position. The optimization problem is constrained to those
solutions that present a low-rank Hankel matrix. We implement a Projected gradient algorithm to
approximate the result. Finally, we show synthetic and field examples. We conclude that the proposed
method successfully reconstructs seismic data, outperforming the standard SSA algorithm.
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Figure 3: Reconstruction of field data. (a) Observed data. (b) Randomly decimated traces. (c)
Reconstructed data via the proposed IMSSA method.
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