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Summary  
The ToC2ME dataset provides a unique opportunity to investigate operational microseismicity and in-
duced events in relation to a hydraulic fracturing experiment in a research-orientated project within Alber-
ta. Previous efforts have identified ~25,000 microseismic events and located up to 18,500 of these using 
a stacked amplitude-envelope methodology, template matching and beam-forming techniques. However, 
most of the events identified are not thought to be directly associated with the operational fracturing pro-
cedure. Here, we use an STA/LTA algorithm and coincident trigger methodology to identify microseismici-
ty. Our thresholds for detection are set reasonably low in order to detect as many events as possible, 
while minimising false alarms. We find many events with clear phase arrivals which have not been identi-
fied in previous catalogs of this seismicity. The amplitudes, inter-event times and frequency contents of 
the waveforms identified suggest a stable regime. Furthermore, we hope to use these events in a tem-
plate matching procedure to further populate the catalog with low amplitude events which may be hidden 
by noise or temporal spacing, as some families of repeating seismicity have already been identified with-
in this catalog by using this methodology. 

Introduction 
Hydraulic fracturing causes seismicity through the generation of tensile fractures by the injection of highly 
pressurised fluids into hydrocarbon-bearing reservoirs (e.g. Maghsoudi et al., 2018; Eaton, 2018; Schultz 
et al., 2017; Atkinson et al., 2016). Commonly, the term ``induced'' refers to any seismicity that is pro-
duced through anthropogenic activities (Keranen and Weingarten, 2018). Here, however, we use induced 
to mean seismicity which is generated due to increases in pore fluid pressure and stresses in close prox-
imity to the reservoir (e.g. Ellsworth, 2013), and not that which is directly produced by operational fractur-
ing within the geologic horizons of interest. 

In recent years, the rates of large earthquakes (Mw>3) appears to have increased in relation to anthro-
pogenic processes such as hydraulic fracturing experiments and waste-water injection (e.g. Atkinson et 
al., 2016). This not only has consequences for populations living in close proximity to these sites in terms 
of health and safety, but also for the large companies operating these stimulations, as regulations have 
now been bought in which force the shut-down of operations if seismicity exceeds certain thresholds. 
Typically, microseismic events associated with hydraulic fracturing have moment magnitudes of between 
-3 and +1, although most events occur with magnitudes less than zero (Warpinski et al., 2012). This 
makes them inherently difficult to monitor using sensors deployed at the surface.  

The Tony Creek Dual Microseismic Experiment (ToC2ME) is a research-led project by the University of 
Calgary (UofC), in collaboration with a number of industry partners. The array consisted of 69 cemented 
shallow boreholes (only 68 produced viable data), each with one three-component geophone at 27 m, 
and three one-component geophones at 22 m, 17 m and 12 m respectively. These sensors continuously 
monitored a four-well hydraulic fracture experiment in the Kaybob-Duvernay region from 25 October to  

GeoConvention 2019 
 1

 



15 December 2016 (Eaton et al., 2018). The Kaybob-Duvernay region is of particular interest as a num-
ber of large (> Mw 0) induced seismic events have been reported here, including one Mw 3.2 event dur-
ing the period of acquisition. 

Event detection using a stacked amplitude-envelope methodology across the entire array (68 boreholes) 
produced ~25,000 candidate events, which were visually inspected to identify events with high signal-to-
noise ratios. From this, 15 template events were chosen and following Caffagni et al. (2016), a match-
filtering detection algorithm was applied allowing the identification of ~14,000 microseismic events (Eaton 
et al., 2018). 4083 of these events showed clear P- and S- wave arrivals, with Mw -1 to Mw 3 and hypo-
center locations in a number of distinct clusters. However, since only 15 template events were used for 
this identification, the results are inherently biased. Eaton et al. (2018) note that there are likely to be a 
plethora of events not identified using this technique, since many are likely to be low amplitude events 
embedded in noisy data. These events probably have small magnitudes (Mw < 0.5) and are most likely 
related to operationally induced seismicity during the completion stages (Eaton, 2018), which are notori-
ously more difficult to detect due to their small moment magnitudes (Warpinski et al., 2012).     

In order to improve the available catalog, a beam-forming technique based on amplitude ratios (Verdon 
et al., 2017) was used on the ~25,000 detected candidate events, allowing the successful location of 
18,472 events (Igonin et al., 2018). This represents approximately 60% increase in the number of located 
events from the original catalog, with these events clearly mapping a number of distinct linear subsurface 
features at depth. However, commercial processing of this dataset has identified >50,000 microseismic 
events, in comparison to the identification of ~25,000 by Eaton et al., 2018.  

Identifying Operational microseismicity at Tony Creek 
In order to reduce the effect of the template bias, we propose the use of a two-stage analysis whereby 
firstly microseismic events are detected using simple amplitude ratios across the entire borehole net-
work, and secondly then use a template matching technique, with templates being based on all events 
detected in the first stage. REDPy uses a simple amplitude ratio algorithm to detect seismic events from 
the continuous record on a multiple station network and then determines whether any events are similar 
by identifying all events over a given cross correlation threshold (Hotovec-Ellis and Jeffries, 2016). In our 
case, we are interested in both the events which are classified into families, and events which do not 
(known as orphan events) as templates are be generate from both. REDPy allows us to identify both 
types of events. 

The REDPy algorithm for event detection consists of a trigger based on an short-term amplitude to long-
term amplitude ratio (STA/LTA) algorithm and is better able to detect weak seismicity, compared to a 
simple amplitude-only trigger mechanism (Trnkoczy, 2002). We use an STA window of 0.2 seconds (100  
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Figure 1b: Waveform identified by REDPy in this 
study that was not included in previous ToC2ME 
catalog. Clear phase arrivals can be identified in this 
waveform making it a good candidate for a success-
ful location.

Figure 1a: Waveform identified by REDPy in this 
study that was also included in the previous 
ToC2ME catalog. 



samples), an LTA window of 1 second (500 samples), and a trigger threshold of 2.5, on only the Z-com-
ponent of the 3-C sensors across the array, totalling 69 stations. The continuous data is bandpass fil-
tered between 10 and 70 Hz to remove spurious noise, similar to Eaton et al. (2018), however we take 
lower frequencies into account than they do. In order for an event to be detected, we require a coincident 
trigger on at least 10 stations. This ensures that even small events which may only register on proximal 
stations are identified, but will allow us to keep errors small in the location analysis through a greater 
number of picks. An obvious trade-off exists between the length of the windows and the trigger thresh-
olds, and in our case we have kept our parameters low in order to try and detect as many events as pos-
sible. Visual inspections confirms that values we have chosen appear to balance well between false trig-
gers and missed events.  

Results and Observations 
Our methodology using a coincident trigger from multiple stations across the network identifies many mi-
croseismic events which have previously not been included in the ToC2ME catalogues of events (e.g. 
Eaton et al., 2018). Many of these events show clear P- and S- wave phase arrivals (Figure 1), and 
therefore would be good candidates for successful location analysis using conventional methods. There 
is some evidence of clustering of the microseismicity with time, with bursts of events interspersed with 
periods of quiescence lasting up to ~2 hours. Preliminary results of spectral and temporal characteristics 
of the microseismicity identified suggests that the RMS maximum amplitude, the inter-event time and the 
frequency content of waveforms remain fairly constant with time (e.g. Figure 2). Waveforms are dominat-
ed by high-frequency content (between 30 and 70 Hz, as indicated by values greater than zero in the 
lower panel of Figure 2), and the minimum inter-event time reported is 1.5 seconds. 

REDPy has the inbuilt capability to perform cross correlations on detected events in order to determine 
waveform similarity. This is advantageous as it allows us to speculate on different families of events and  
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Figure 2: Waveform analysis across a 5 day period of 671 events. Upper: RMS maximum amplitude of 
events. Middle: Inter-event time (seconds). Lower: Frequency content of the waveforms (Frequency 
Index). FI > 0 indicates events dominated by energy between 30 and 70 Hz, FI < 0 indicates events 
dominated by energy between 10 and 30 Hz. 



their durations without having to undertake a full template matching procedure. REDPy identified one 
dominant family, which contained over 100 similar events, in addition to two smaller families. Further 
analysis will be undertaken into the similarities of waveforms when we use template matching to further 
enhance the number of detected microseismic events.   

Discussion, Conclusions and Future Work 
The identification of microseismcity using a simple amplitude ratio algorithm with coincident triggers 
across at least 10 stations provides promising results into identifying microseismicity within this noisy en-
vironment. Coupled with a template matching technique using all the identified events as templates, we 
believe this is an excellent way in which to try and identify low amplitude events in low signal-to-noise 
environments. Although extensive location analysis will need to be carried out on the events identified by 
REDPy, the nature of the algorithm and visual inspection of a number of the candidate events suggests 
the high likelihood of location based on distinct phases in the waveforms (e.g. Figure 1). The candidate 
events identified by REDPy show very little variation in RMS amplitude, inter-event time or frequency 
content (Figure 2). Except for one larger amplitude event, RMS amplitudes remain constant. A subtle in-
crease in the hours before the large amplitude event is not reflected in significant changes in either the 
inter-event time, the frequency index or the number of events identified. Further analysis across the en-
tire dataset will reveal whether events are variable in relation to these parameters in either time or space.   

A recent new addition to the REDPy algorithm is the ability to add a time offset to the recording sensors. 
This technique is similar to a beam-forming algorithm in which P-wave onsets are shifted based on theo-
retical P-wave travel times at depth. Due to the extensive distribution of geophones (approximately 56 
km2 in the ToC2ME dataset, it is feasible that some events were not detected because the move-out be-
tween stations meant the REDPy algorithm did not consider them to be the same event. The time offset 
feature will compensate for this. However, one difficulty in implementing this is that only one time offset 
can be set within the algorithm. Determining the most appropriate time offset to minimise false detections 
will require a number of iterations.   

Following the identification of microseismic events using REDPy, we propose to take the core event of 
each family identified across the entire ToC2ME sequence (from 25 October to 15 December), as well as 
all events identified as orphan events, and use these as templates to scan for more events within the 
continuous data. EQCorrScan (Chamberlain et al., 2017) is  a template matching algorithm that has 
proved useful for identifying similar seismic events hidden in noisy environments, since events closely 
spaced in time and events with small amplitudes can be resolved (Salvage et al., 2018). A technique 
such as this will likely yield more events, since Eaton et al., 2018 have already shown that a template 
matching approach provides significant gains in event detection within the ToC2ME dataset. 

We still cannot be certain that the events identified using REDPy are operational microseismic events 
until a thorough location analysis has been undertaken. In fact, since REDPy relies upon amplitude ra-
tios, it is more likely that this algorithm will detect larger amplitude events and those with high signal-to-
noise ratios. The use of the candidate events identified by REDPy as templates may allow us to identify 
those events hidden by greater noise, of low amplitude and those which are closely spaced in time. 
These are the most likely candidates to be the operationally induced microseismic events which have 
thus far eluded detection by other methods. 
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