
 

  

  

GeoConvention 2019 1 

An implicitly weighted least squares algorithm for time domain 
Radon transform 

Zhengsheng Yao, Valentina Khatchatrian and Randy Kolesar 

Schlumberger 

Summary  

High resolution Radon transform is proven to be an effective tool to enhance signal and suppress 
unwanted seismic events. The algorithm of weighted least squares has been successfully adopted in 
high resolution Radon transform performed in frequency domain. However, due to the lack of high 
resolution in time for frequency domain radon transform, time domain radon transform may be found 
more attractive. In this paper, we formulate time domain weighted least squares radon transform as a 
simple linear matrix equation inverse problem and the weighting function is implicitly embedded in the 
coefficient matrix of the equation.  Because the none-zero elements in the coefficient matrix are very 
sparse, the solver of conjugate gradient can be used for computational efficiency.  

Introduction  

Radon transform can be expressed by the following operator that is an integration of the data along a 
given travel–time curve ∅(𝜏, ∆, 𝑞) which depends on the reduced time 𝜏, offset ∆ and ray parameter q: 

                        𝑚(𝜏, 𝑞) = ∑ 𝑑(𝑡 = ∅(𝜏, 𝑞, ∆), ∆𝑖𝑖 )                                                            (1) 

Equation 1 represents a simple mapping from data space to the transform domain. To obtain more focus 
in Radon domain, the Radon transform is carried out in an inverse formulation 

                       𝑑(𝑡, ∆) = ∑ 𝑚(𝜏 = ∅𝑎𝑑𝑗(𝑡, 𝑞, ∆), 𝑞)𝑞                                                           (2) 

where, ∅𝑎𝑑𝑗 is the adjourn operator of ∅. The advantage of this formulation is that in inverse problem, the 
priori information regarding to model variable m can be added to obtain what is known as high resolution 
Radon transform, e.g. Sacchi, 2009. 

Solution is commonly obtained in frequency domain due to generally accepted computational efficiency 
and simplicity of the formulation. Application of Fourier transform to both sides of equation (2) yields 
expression for each frequency, so each component can be processed independently (Sacchi, 2009): 

                      𝐷(𝜔, ∆𝑘) = ∑ 𝑀(𝜔, 𝑞)𝑗 𝑒−𝑖𝜔𝜑(∆𝑘,𝑞𝑗)                                                             (3) 

Equation (3) can be written as matrix equation: 

[

𝐷(𝜔, ∆1

𝐷(𝜔, ∆2

⋮
𝐷(𝜔, ∆𝑛

] = [

𝑒−𝑖𝜔𝜑(∆1𝑞1)

𝑒−𝑖𝜔𝜑(∆2𝑞1)

⋮
𝑒−𝑖𝜔𝜑(∆𝑛𝑞1)

𝑒−𝑖𝜔𝜑(∆1𝑞2)

𝑒−𝑖𝜔𝜑(∆2𝑞2)

⋮
𝑒−𝑖𝜔𝜑(∆𝑛𝑞2)

⋯
⋯
⋮

𝑒−𝑖𝜔𝜑(∆1𝑞1)

𝑒−𝑖𝜔𝜑(∆1𝑞𝑚)

𝑒−𝑖𝜔𝜑(∆2𝑞𝑚)

⋮
𝑒−𝑖𝜔𝜑(∆𝑛𝑞𝑚)

] [

𝑀(𝜔, 𝑞1)
𝑀(𝜔, 𝑞2)

⋮
𝑀(𝜔, 𝑞𝑚)

] 

or simply: 

                     𝐷(𝜔) = 𝐴(𝜔)𝑀(𝜔)                                                                                      (4) 

Based on linear inverse theory, the priori information related to 𝑀(𝜔) can be added and the solution can 
be obtained via the normal equation (Menke William 1989) 

                      (𝐴𝑇𝐴 + 𝜆𝑊𝑇𝑊)𝑀 = 𝐴𝑇𝐷                                                                             (5) 

Where the matrix W is the priori information regarding to model M and 𝐴𝑇 is the transpose of 𝐴. When 
the matrix 𝑊 is defined as diagonal matrix with diagonal element proportional to the desired model 𝑀, 
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the equation becomes so called high-resolution Radon and solution is obtained by re-weighted least 
squares (e.g. Trad, 2003). 

Frequency domain solution lacks high resolution for variable 𝜏 because this variable is not explicitly 
present in the equation. Dividing the data into a series of time windows may help increase resolution for 𝜏 
but this may lead to an artifact due to the seismic events truncation (Cary, 1998). Hence, the time 
domain Radon transform can be preferable. Time domain Radon transform with matching pursuit 
technique can be found in recent publications, e.g. Wang, 2018. The problem is solved by iteratively 

collecting the largest model component 𝑚(𝜏𝑖, 𝑞𝑗) from the residual of the data. Essentially Radon 

transform, i.e. equation (1), can be considered as a moveout correction and stacking and ideally a 
seismic event in Radon domain should be a wavelet due to frequency band limit. Therefore, the best 
performance of matching pursuit needs wavelet information that may be difficult to obtain. On the other 
hand, re-weighted least squares method that uses previous model as a weighting function may implicitly 
handle wavelet properly.  

In this paper, we present an algorithm that based on re-formulated direct matrix equation formulation for 
weighted least squares Radon Transform. 

   

Formulation of Time domain implicitly weighted least squares Radon Transform 

Corresponding to equation (1), the matrix equation for time domain can be formulated as  

                     𝑚(𝜏𝑖 , 𝑞𝑗) = ∑ ∑ 𝐴(𝜏𝑖 , 𝑞𝑗; 𝑡𝑘 , ∆𝑙)𝑙𝑘 𝑑(𝑡𝑘 , ∆𝑙)  

Mathematically, we can unfold the equation into 2D matrix equation. Unfold is based on the rule                         

[
𝑎11 𝑎12 𝑏11 𝑏12
𝑎21 𝑎22 𝑏21 𝑏22

] → [

𝑎11

𝑎21
 𝑎12 
𝑎22

𝑏11

𝑏21

𝑏12 
𝑏22

]  then, we can come to a standard matrix equation for linear 

equation system: 

                          𝑀𝑛𝑡∗𝑛𝑞×1 = 𝐴𝑛𝑡∗𝑛𝑞×𝑛𝑡∗𝑛𝑥𝐷𝑛𝑡∗𝑛𝑥×1                                                                        (7) 

If we define M as an inverse problem that comparable to equation (2), then we may have 

                         𝐷𝑛𝑡∗𝑛𝑥×1 = 𝐴𝑛𝑡∗𝑛𝑞×𝑛𝑡∗𝑛𝑥
𝑇 𝑀𝑛𝑡∗𝑛𝑞 ×1                                                                        (8) 

where 𝐴𝑇 is the transpose of A. The weighted least squares solution to equation (8) has the same form 
as equation (5). 

In equation (5), assuming the weighting matrix is invertible, we can substitute: 

                        𝑀̂ = 𝑊𝑀   𝑎𝑛𝑑 𝐴̂ = 𝐴𝑇𝑊−1  

Then the normal equation can be written as: 

                        (𝐴̂𝑇𝐴̂ + 𝜆𝐼)𝑀̂ = 𝐴̂𝑇𝐷                                                                                              (9) 

The advantage of equation (9) is that the weighting function is embedded into transformed operator, it is 
possible to exploit the weighting even without an explicit regularization term, i.e. 𝜆 = 0, then it becomes 
solving a simple matrix equation problem, i.e. 

                         𝐴̂𝑀̂ = 𝐷                                                                                                                (10)    

 Note, that 𝐴̂ is a very large matrix with very few non-zero elements and its dimension depends on the 
method of interpolation for fractional data time samples. We adopt linear interpolation shown in figure 1, 

the maximum number of none zeros elements is 2*nt*nx and the compact version of matrix 𝐴̂ will have 
dimension of nt*nq by 2*nx. Therefore, equation (10) can be efficiently solved with Conjugate gradient 

algorithm and M can be obtained by 𝑊−1𝑀̂. (please note that the straight line shown in figure 1 is just an 
example for illustration, the line can be of any shape). 
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             Figure 1. The elements are involved for a line integration 

 

The physical meaning of equation (10) is obvious, i.e. more weighing impact on the components of M 
that have more energy, which is comparable to matching pursuit/greed method where components 
related to the largest model parameters are selected for inversing data. Essentially when the diagonal 
elements of weight matrix are sparse, then equation (10) is equivalent to orthogonalized matching pursuit 
method, e.g. Cai & wang, 2011, wang, 2018. However, instead of adding one component and re-do least 
squares solving procedure in orthogonal matching pursuit, equation (10) directly apply weighting function 
to all components.     

 

Example 

The example shows resolution comparison of the Radon transform in frequency and time domains with 
same number of iterations for the solver of conjugate gradient. Figure 2 shows input synthetic data that 
contain horizontal and parabolic moveout events and the results of frequency domain and time domain 
transforms. While calculations in both domain can produce high resolution for in q-axis, time domain Radon 
shows better resolution in the 𝜏 axis direction. The next test was to remove second event by applying same 
mute function to the data in Radon domain (Figure 3). The reconstructed data from muted Radon transform 
and the removed event are shown in figure 4, which shows the advantage of time domain Radon 
Transform. 

 

                  
         Figure 2: from left to right: input data, Freq. domain Radon transform and time domain Radon Transform 

 

 

                                    
           Figure 3. Applied mute to Freq. domain Radon transform (left) and time domain Radon Transform (right) 
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           Figure 4. Reconstructed data and multiple: Freq. domain Radon transform (left) and time domain Radon Transform (right) 

 

 
The second example shows application of the proposed Radon transform to real data multiples 
attenuation. Figure 5, (a) shows NMO corrected input data contaminated with multiples. The results of 
primaries and multiples separation are shown in (b) and (c), respectively. 
 

 

                                

                Figure 5: (a) input data; (b) and (c) primary and multiples, respectively. 
 

 

Conclusions 

We presented an implicitly weighted least squares algorithm for time domain Radon transform to achieve 
better resolution in time dimension over that of in frequency domain. In our formulation, the weighting 
function directly impact on related components of q in radon domain, which can be an alternative of 
orthogonal matching pursuit approach. However, instead of adding one component and re-do least 
squares solving procedure in orthogonal matching pursuit, our algorithm directly apply weighting function 
to all components and therefore, it is of more computational efficient. The numerical example shows that 
our algorithm can be applied to remove unwanted event that has the same moveout as others. 
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