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Abstract 

Deep learning technique has drawn numerous attentions and becomes to be extremely powerful 
tool in many fields of industry, where the recurrent neural network (RNN) shows significant 
advantages of exhibiting temporal dynamic behavior of time-dependency tasks by build a directed 
graph of a sequence. To explore the potential benefits of deep learning technique in exploration 
geophysics, in this paper we illustrate the forward modeling problem in a perspective of deep 
learning, by recasting the wave propagation in a RNN framework. Furthermore, the inverse 
problem, becoming to be a ̀ training' process of RNN, is analyzed by deriving the gradient in sense 
of neural network. The result shows that, under some assumption, the inverse problem using 
RNN is approximately equivalent to the full waveform inversion (FWI). With the proposed specific 
RNN framework, we theoretically and numerically analyze the best learning rate (i.e., usually 
being called step-size in geophysics) ranges for most popular gradient-based optimization 
algorithms used in deep learning tasks. The efficiency of the gradient-based algorithms is 
investigated by comparing with non-linear optimization methods, such as non-linear conjugate 
gradient (CG) and L-BFGS, on a 2D Marmousi model. 

The forward problem in deep learning framework 

The forward problem, namely, seismic wavefield modeling, usually is being denoted as the partial 
differential wave equation (Carcione et al., 2002). Assume an acoustic media in 2D with a constant 
density, the wave equation in time domain is written as 

∇2𝒖(r, t) =
1

v2(r)

∂2𝑢(𝑟,𝑡)

∂𝑡2 + 𝑠(𝑟, 𝑡)δ(𝑟 − 𝑟𝑠)    (1) 

where ∇2 denotes the (spatial) Laplacian operator, and the spatial coordinates is described by r. 
u usually represents the pressure or displacement for acoustic medium wave propagation, with 
the time coordinate t. The source term is denoted by s. 
The forward modeling of seismic wave propagation is conventionally performed by discretizing 
the wave equation (Carcione et al., 2002). To simplify the problem and make it intelligible for 
readers, the second-order finite difference method (Virieux, 1986), both in time and spatial 
coordinates, is applied to solve the wave propagation. The mathematical formulation is written as 

𝒖(𝒓, 𝑡 + Δ𝑡) = 𝑣2(𝒓)Δ𝑡2[∇2𝒖(𝒓, 𝑡) − 𝒔(𝒓, 𝑡)δ(𝒓 − 𝒓𝒔)]  +  2𝒖(𝒓, 𝑡)  −  𝒖(𝒓, 𝑡 − Δ𝑡)   (2) 
Equation (2) shows that the forward modeling of wave propagation can be considered as an 
iterative process which takes the source term s (rs, t) and the two previous time steps wavefields 
as inputs. It inspires us that it is possible to solve the forward modeling problem with a recursive 
neural network where each time layer (i.e., cell) denotes the wavefield modeling at one single 
time step. A much robust version can be found in paper by Richardson (2018). 
To theory-guiding RNN architecture, a single cell of designed forward modeling RNN represents 
the finite-difference operator, which takes the sequence at one single time step as the input, 
outputs the modeled shot record at current time step, and save the memory and the modeled 
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wavefield of this block for the next time step modeling. The cell architecture of forward modeling 
RNN is illustrated in Figure 1.  

The inverse problem in deep learning framework 

The inverse problem in geophysical exploration is to obtain the subsurface model parameters 
based on the approximation of medium type, which is usually being treated as a least-squares 
local optimization problem by minimizing the square of the misfit between the recorded seismic 
records and the modeled seismic data, i.e.,  𝛿𝒅 =  𝒅𝒐𝒃𝒔 − 𝒅𝒑𝒓𝒆𝒅 (Tarantola,1983 Virieux and 

Operto, 2009). The formulation of least-square norm of misfit function is written as 

J(𝒗) =  
1

2𝑛𝑠
∑ ∑ ∑ (𝒅𝑡 − 𝒅̃𝑡)2

𝑡𝑟𝑔𝑟𝑠
    (3) 

In perspective of RNN's framework, the gradient calculation of the objective function with respect 
to trainable parameters is achieved by the chain rule performing in sense of reversal time. The 
gradient formulation is written as 

𝐠 =  
𝜕𝐽

𝜕𝒗
= ∑ [

𝜕𝐽

𝜕𝒖̃𝒕
]

𝜕𝒖̃𝒕

𝜕𝒗
𝑇
𝑡=0       (4) 

In equation 4, the partial derivative [ 𝜕𝐽/𝜕𝒖̃𝒕] is calculated using chain rule with time-dependency 
terms determined by the order of finite-difference of forward modeling. Considering the second-
order finite-difference modeling, its formulation is coherent to two dependency terms at next two 
time steps, which can be expressed as 

[
𝜕𝐽

𝜕𝒖̃𝒕
] =  [

𝜕𝐽

𝜕𝒖̃𝒕+𝟐
]

𝜕𝒖̃𝒕+𝟐

𝜕𝒖̃𝒕
+ [

𝜕𝐽

𝜕𝒖̃𝒕+𝟏
]

𝜕𝒖̃𝒕+𝟏

𝜕𝒖̃𝒕
 +

𝜕𝐽

𝜕𝒖̃𝒕
   (5) 

where the initial conditions of RNN backpropagation are assumed to be zeros, i.e., 
[ 𝜕𝐽/𝜕𝒖̃𝒕]𝑡=𝑇+1,𝑇+2 = 𝟎. After do the math, the partial derivative can be reformulated as 

                   [
𝜕𝐽

𝜕𝒖̃𝒕
] = 𝒗𝟐∆𝑡2 (∇2 [

𝜕𝐽

𝜕𝒖̃𝒕+𝟏
] −

1

𝑛𝑠𝒗𝟐∆𝑡2
∑ ∑ 𝛿𝑑𝑡𝑟𝑔𝑟𝑠

) + 2 [
𝜕𝐽

𝜕𝒖̃𝒕+𝟏
] − [

𝜕𝐽

𝜕𝒖̃𝒕+𝟐
] (6) 

Equation 6 shows that the partial derivative of the objective function over predicted wavefield 
[ 𝜕𝐽/𝜕𝒖̃𝒕] is performed by propagating the scaled data residual in reversal time. Therefore, the 

gradient for model perturbation is rewritten as 

     𝐠 = ∑ 𝐵𝑃 (−
1

𝑛𝑠𝒗𝟐∆𝑡2
∑ ∑ 𝛿𝒅𝑡𝑟𝑔𝑟𝑠

)
𝜕𝒖̃𝒕

𝜕𝒗
𝑇
𝑡=0   

≈ ∑ 𝐵𝑃 (−
1

𝑛𝑠
∑ ∑ 𝛿𝒅𝑡𝑟𝑔𝑟𝑠

)
2

𝒗𝟑
𝑇
𝑡=0

𝜕2𝒖̃𝒕

𝜕𝒕𝟐      (7) 

where, BP(s) indicates the back-propagation of source s in reversal time (T → 0).  𝛿𝒅𝑡 represents 

the residuals between observed and predicted data. Further, equation 7 indicates that the 

Figure 1. The cell architecture of designed RNN framework. 
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perturbation model obtained by the gradient is performed by the crosscorrelation between the 

second-order partial derivative of the forward wavefield over time and the back-propagation 

wavefield using the residual as the source, which is equivalent to the gradient of time-domain full-

waveform inversion shown in paper by Yang et al. (2015). In other words, FWI is also a specified 

machine learning process with a self-designed RNN framework, where the unknown subsurface 

parameters are treated as the trainable weights of neural network. 
A key problem in deep learning training process is the hyperparameter tuning, which is still one 

of the toughest obstacles. In deep learning cases, the learning rate is usually determined by 

empirical analysis or some trials, which is in range of (0, 1].  However, the proposed RNN in this 

paper is not a typical architecture presented in literatures. Detailed analysis of hyperparameter 

tuning of such a RNN can be found in our report (Sun et al., 2018).  

The synthetic example of Marmousi 

To fully examine the capacity of casted RNN 
framework for velocity modeling, the 2D 
synthetic Marmousi (Figure 2) is employed to 
create synthetic short records as observed 
data, and a smoothed model is considered as 
initialization. For comparison, we also 
performed traditional FWI using nonlinear CG 
(Hu et al., 2011) and l-BFGS (Morales and 
Nocedal, 2011) algorithms, respectively.  

To effectively compare the efficiency of these 
algorithms, the predicted results versus the 
forward modeling 
iteration are plotted. In 
Figure 3, the RNN 
inversion results using 
non-linear CG method 
is delineated at [400, 
800, 1420]th forward 
iterations. We can 
observe that the non-
linear CG algorithm is 
able to retrieve the 
major structures of 2D 
Marmousi model, 
however it requires a 
tremendous computational cost because of its slow convergence speed. Figure 4 shows the RNN 
modelled velocity of 2D Marmousi using l-BFGS algorithm. Comparing to non-linear CG method, 
l-BFGS has much faster convergence speed and is able to obtain more precise and detailed 
results with less iterations. Finally, we implement the velocity building using the most popular 
deep learning algorithm, i.e., Adam (Kingma and Ba, 2014), through the designed RNN 
framework. Based on the numerical analysis of hyperparameter tuning (Sun et al., 2018), for 
velocity inversion, a suitable learning rate is in range of [10,100], which may provide fastest and 

 
Figure 2. (a) True Marmousi. (b) initial model. 

Figure 3. The inversion of Marmousi using CG algorithm. (a) True Marmousi. (b) at 400th 

iteration. (c) at 800th iteration. (d) at 1420th iteration. 
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stable convergence 
process. Furthermore, 
the analysis shows the 
effects of learning rate 
can be neglected as 
long as it is in the 
suitable range. In 
Figure 5, after 50 
iterations, Adam 
obtained a better 
resolution of velocity 
model than non-linear 
CG and l-BFGS. With 
100 iterations, a very 
precisely velocity 
model of Marmousi is 
built. The efficiency 
comparison is plotted 
in Figure 6. It shows 
that, Adam is capable 
of retrieving the 
detailed subsurface 
parameters with much 
less iterations. 

Conclusion 

Deep learning has 
been tremendously improved and widely applied in different fields. To benefits from the well-
developed deep learning community and open-source libraries, we proposed a self-designed 
recurrent neural network which allows us to cast the forward modeling of seismic wave 
propagation into the forward propagation of RNN framework. As a consequence, the geophysical 
inversion problem is also turned into a training process of the presented RNN framework, where 
full wavefield information are involved. The gradient derivation using chain rule in deep learning 
perspective shows that the training process of the RNN is equivalent to a FWI problem. In other 
words, it is proven that FWI is also a specific machine learning case. A 2D acoustic Marmousi 
model is employed to examine the full capacity of 
RNN using nonlinear CG, l-BFGS and Adam 
algorithms, respectively.  
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Figure 5. The inversion of Marmousi using Adam algorithm. (a) True Marmousi. (b) at 

25th iteration. (c) at 50th iteration. (d) at 100th iteration. 

 
Figure 4. The inversion of Marmousi using L-BFGS algorithm. (a) True Marmousi. (b) at 

200th iteration. (c) at 600th iteration. (d) at 1000th iteration. 

 
Figure 6. The convergence comparison of non-linear CG 

, L-BFGS, and Adam algorithms on 2D Marmousi model. 
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