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Summary 

Modeling of seismic wavefields in anelastic media is used in a vast number of applications and 
implemented by numerous methods and software algorithms. Historically, all of these methods 
are based on the viscoelastic model, which explains wave attenuation by the Q-factor, time-
dependent “material memory”, and frequency-dependent material properties. However, none of 
such material properties actually exist in rocks or Earth media. It is important to realize that 
the Q commonly used to parameterize attenuation models is an “apparent” property, i.e. an 
ambiguous quantity inserted empirically in order to simulate the observed attenuation effects by 
using (generally) inaccurate equations. The differences of true attenuation effects from the 
predictions of Q-based models are the strongest for gas- and fluid saturated porous rocks, 
which are of the most importance for seismic interpretation of oil and gas reservoirs. 
It is therefore important to be able to perform seismic modeling by using not an empirical “Q” but 
true physical and geological properties of the subsurface. In contrast to the single Q, there exist 
many physical properties responsible for wave attenuation. Such properties include elasticity 
and viscosity matrices, pore-fluid content, fluid mobility, and internal structure of the material. In 
this paper, we show how such properties can be used for accurate modeling of wave 
propagation in layered anelastic media. Attenuation effects such as the apparent Q, velocity 
dispersion, and tuning and reflection AVO/QVO effects are modeled in arbitrary layered 
structures consisting of poroelastic, squirt-flow, and the so-called Standard Linear Solid (Zener) 
rheologies. Interestingly, the modeling shows that combination of many layers traversed by the 
seismic wave may naturally explain the near-constant Q or broad attenuation peaks often 
observed in field and laboratory seismic studies. 

Introduction 

Inverse viscoelastic (VE) Q factors are broadly used in seismic interpretation and are believed 
to be related to reservoir parameters such as porosity, saturation, and fluid viscosity (e.g., Chen 
et al., 2018). However, although firmly established in geophysical curricula, the VE model still 
contains significant uncertainties and unacceptable physical inaccuracies. These shortcomings 
are caused by relying on the phenomenological “material memory” instead of the actual physical 
properties, and by not recognizing the effects of boundaries and contrasts in material properties 
on anelastic attenuation. These problems do not manifest themselves in cases where the spatial 
variations in material properties are not considered, such as for waves in uniform media or in 
laboratory observations with rock samples. Nevertheless, for waves in heterogeneous media 
including most practical cases in exploration seismology, the physical inaccuracy of the VE 
model is substantial and critical for interpretation (Morozov and Baharvand Ahmadi, 2015). 



 

In section “Method” below, we briefly describe an alternate to VE, rigorous, continuum-
mechanics based approach to modeling seismic wavefields without assuming a Q factor but 
based on the “General Linear Solid” formulation by Morozov and Deng (2016a, 2016b). We 
apply this approach to numerical modeling of reflected and transmitted seismic-wave responses 
in 1-D layered media. As a specific example, we examine a single reflective layer and further 
approximate the elastic and anelastic structure of the Weyburn oil reservoir in southern 
Saskatchewan. The results are interpreted in terms of several types of Q measured from the 
modeled wavefields. 
Because the mechanical rheologies for rock are poorly known (only several estimates were 
recently made by Deng and Morozov, 2016, Morozov et al., 2018, and Deng and 
Morozov, 2018a, 2018b), we assume that each layer represents a mixture of the poroelastic 
(Biot, 1956) and the Standard Linear Solid (SLS) rheologies. Such parameterization of the 
layers as SLS is consistent with many classic and recent studies modeling and estimating Q 
from seismic data (e.g., Liu et al., 1976; Chen et al., 2018; Qadrouh et al., 2018). 
Another major, but unfortunately also unnoticed omission of conventional VE modeling consists 
in disregarding the boundary conditions for internal variables within an anelastic medium 
(Morozov and Deng, 2018). Different types of internal boundary conditions cause significant 
variations in the modeled Q values for waves, even though the materials of the layers remain 
the same. Two types of such boundary conditions are illustrated in section “Results”. 

Method 

In the standard VE theory, propagation of seismic waves in an anelastic medium or deformation 
of a rock sample in a laboratory experiment is governed by integro-differential (“material 
memory”) equations in time combined with differential-only equations in space (for example, see 
the book Carcione (2007) and many papers by the same author). Nevertheless, the material 
memory is still a hypothetical (empirical, effective, or “apparent”) material property. In rigorous 
physics, the dynamics of an anelastic material should be described by only “instantaneous” 
partial-differential equations. These equations can be obtained from two basic observations: 

1) Anelasticity of the medium results not from “memory” but from parts of its internal 
structure (such as pores, fluids, or grains) moving relative to each other. This means that 
some internal variables describing these movements must always be present in an 
anelastic medium. 

2) All equations of motion must follow from rigorous continuum mechanics and utilize only 
macroscopic, time- and frequency-independent material properties (Landau and 
Lifshitz, 1986). 

For linear elastic and frictional interactions within the medium, these principles give the most 
general governing equations for the field  (Morozov and Deng, 2016a): 
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where indices i, j = 1, 2, or 3 denote the spatial dimensions,  is the strain 

tensor,  is the volumetric strain,  is the deviatoric strain, and 
summations over pairs of repeated spatial indices are implied. Tensor sij (matrix in model 
space) is the total stress. Material properties are given by the density matrix r, the bulk (K) and 
shear (µ) elastic moduli matrices, the corresponding viscosity matrices hK and hµ, and the drag 
(inverse mobility) matrix d. Each of these matrices is square, symmetric, and positive definite 
(Morozov and Deng, 2016a). 
The model in eqs. (1) represents the most general case of linear anelastic interactions and is 
therefore suitable for practically all types of rocks and fluids. In poroelasticity-type models with 
single or multiple porosities, the principal source of internal friction is the Darcy drag force  
in the first eq. (1). This body force is also the principal mechanism of interaction between the 
rock matrix and partial melt in rock compaction models (McKenzie, 1984). By contrast, all 
conventional VE models are obtained by setting , and therefore the divergence of stress 

 is the only type of frictional force considered in them. This is a significant limitation when 
using the conventional VE-type seismic modeling (Morozov and Deng, 2016b). 
A fundamental difference of rigorous equations of mechanics from their VE counterparts (Blanch 
et al., 1995; Carcione, 2007) consists in eqs. (1) generally predicting N P-wave and N S-wave 
modes, whereas the VE model uses only one P and one S wave (we do not consider the 
anisotropy or inhomogeneous waves here). The multiple wave modes are analogous, for 
example, to the primary (ordinary, or “fast”) and secondary (“slow”) P waves well known in 
Biot’s (1956) poroelasticity. Thus, in an anelastic medium, we should generally expect to see 
one primary and  secondary wave modes. The secondary modes are usually diffusive or 
“evanescent” and therefore not easily observable, but their effects should nevertheless be 
significant in media with ~10-cm to 1-m scale layering (Morozov and Deng, 2018). 
In addition to the differential equations (1), boundary conditions at the source and on layer 
boundaries are required in order to determine the resulting wavefield. These boundary 
conditions should also be applied to internal variables uJ (with J > 1), similar to the conditions for 
open and closed pore flows in poroelasticity (e.g., Dunn, 1987). Similarly to poroelasticity, 
internal boundary conditions affect the amplitudes of secondary wave modes and the overall 
attenuation and wave dispersion (Morozov and Deng, 2018). 

Model 

To illustrate the wavefields predicted by eqs. (1), we generated a 1-D column of physical 
properties based on the available velocity, density, and porosity well logs from Weyburn oilfield. 
A fragment of this column is schematically shown in Figure 1. The reservoir interval is modeled 
as poroelastic rock with squirt flows (Deng and Morozov, 2016) or as SLS rheologies, and the 
layers outside of this interval are modeled as elastic. Numerical wavefield modeling is 
performed as described by Morozov and Deng (2016a, 2016b) for oblique incidence of 
harmonic waves with several values of ray parameter p. By using the inverse Fourier transform, 
time-domain records are obtained (not shown for brevity). Finally, by recording the transmitted 
and reflected amplitudes above and below the reservoir zone, AVO responses and the 
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corresponding apparent Q values are obtained. Figure 2 shows an example of reflection 
amplitudes from a simplified case with a single low-velocity layer simulating gas sandstone 
within wet sandstone (parameters from Dutta and Odé, 1979). Note that both the reflection 
amplitudes and AVO patterns strongly depend on the internal-variable conditions on the 
boundaries of the layer, which are not considered in standard modeling approaches. 
Modeling of the apparent Q(f) dependencies shows that if each layer of a medium represents an 
SLS, the stack of layers behaves as a “generalized SLS” (GSLS) producing a band of slowly-
varying attenuation Q-1(f) that can fit many of the existing attenuation datasets (Deng and 
Morozov, 2018a). Note that the GSLS is routinely used in seismology for explaining 
observations of near-constant Q attenuation (Liu et al., 1976) and for implementing the Q in 
finite-difference seismic modeling software (e.g., Blanch et al., 1995). Thus, our results suggest 
that the observed appearances of broad-band or near-constant Q(f) for seismic waves may be 
due to the averaging of attenuation effects in layered media. At the same time, the rocks within 
the layers do not have to possess a near-constant Q(f) or even any definite values of Q at all. 

Conclusions 

The conventional modeling of seismic wavefields based on empirical Q and used in most 
current approaches is greatly over-simplified and may be insufficiently physically accurate, 
particularly for fluid-saturated reservoir rock. We propose an alternate, continuum-mechanics 
based approach and illustrate it on a realistic 1-D models with fine layering. 
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Figure 1.  Schematic model of the layering showing 
the physical properties associated with each 
layer. Reservoir zone is indicated by green bar. 
Fine layering is also included in each lithological 
interval. There is no Q(f) dependence assumed 
for any rock in the model. 

 

Figure 2.  Reflection AVO responses for a 0.5-m thick 
gas-sandstone layer modeled at frequency 
29 Hz assuming elastic, viscoelastic (VE) and 
exact SLS rheologies with closed internal 
boundary conditions (BC; legend). 
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