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Summary 

Bayesian facies estimations provide 3D probabilities of occurrence of each of the possible 

facies in a facies set.  We have greater confidence in the result when the most-probable facies 

has a high winning probability. We are less confident when all the facies show similar 

probabilities.  These ideas can be related to the concepts of entropy and information theory. We 

show how they can be encoded into a simple Confidence Index measure. 

 

We have applied these ideas to a facies-inversion workflow for Gulf of Mexico data and 

demonstrate how Confidence Index can be used to measure workflow effectiveness. The same 

measure can be applied to a collective set of geostatistical inversion realizations of facies.  

 

Method 

The application of Bayes’ rule maps prior probabilities to posterior probabilities, given some new 

information. In the context of reservoir characterization, the new information comes from the 

results of a seismic inversion or its derivatives. Per-facies elastic probability density functions 

(ePDFs) are constructed from elastic log and rock physics model cross-plots, over which the 

inversion results are superimposed. The ePDFs are the basis for the Bayesian analysis.  The 

results are volumes of the probabilities of occurrences of each of the facies at all points in 3D 

space.   

It is useful to assign a reliability measure to estimated facies. It is clear that regions wherein the 

probabilities of the two most-probable facies are almost the same are less reliable than if a 

single facies had been the clear winner. We use the concepts of entropy and information theory 

to compute a Confidence Index which can be used to assess reliability of different regions in the 

reservoir and indeed to compare the results from two different inversion workflows. 

We use the definition of entropy from Shannon (1948) as implemented by Caulfield et al., 2018.  

We have observed that, for the case of Bayesian facies estimation, the probability inputs for 

entropy estimation are readily available from the Bayesian process.  For a set of N facies with 

probabilities of occurrence, pi, the entropy is 

 

 

 



 

The maximum entropy occurs when all the probabilities, pi are equal. Therefore,  

 

Clearly, we are interested in the cases of minimum entropy where one of the facies is dominant 

and has a probability close to 1. It is therefore useful to define a negative, scaled entropy which 

we call the Confidence Index (C.I.).   

 

It has a range between 0 and 1. It is zero when all the probabilities are equal and unity when the 

probability of a single facies is 1.The characteristics of the Confidence Index are further 

demonstrated in Figure 1.  It shows a three-facies set where p1 is allowed to vary and p2=p3 

with, of course, p1+p2+p3=1.  The Confidence Index is plotted in red while the winning probability 

(p1) is the white dotted line.  Note how the C.I. curve is concave and is more sensitive to 

departures of p1 from unity compared to the winning probability. 

 
Example 

We test the above ideas with a Gulf of Mexico data set. The key horizon is the top of the Green 

sand shown in Figure 2. Below the Green horizon, we recognize both upper and lower Green 

sandstones.  Sharp discontinuities are the results of faulting.  Geologically, there is a set of two 

vertically-stacked deltaic systems of middle Pliocene age. They average about 400 ft. in 

thickness and are separated by about 500 ft.  Within the play area are delta slope deformation, 

slump-induced turbidites, thin mouth-bed deposits but without the presence of any delta plain 

facies.  The principle facies are Shale, Silty Wet Sand and oily Pay sand.  

The available seismic consisted of five partial-angle stacks with the maximum angle in the 

farthest stack being 50 degrees This was not judged to be sufficient to resolve density with any 

degree of certainty. A single set of wavelets, one for each partial stack, was obtained by 

matching elastic synthetics to the seismic at each of the seven available wells. The log sets 

included full-wave sonic logs over the reservoir interval, facilitating the creation of the AVO 

wavelets. Three facies were identified: Shale, Silty, Pay 

We tested two different approaches to facies estimation as described in Pendrel and Schouten, 

2018).  The first was a Bayesian facies estimation procedure (Pendrel et al., 2006), the inputs 

for which were elastic impedances. In this facies-first approach, facies were constructed from 

seismic partial stacks and post-stack inversions. The second approach used the facies 

estimation created above and per-facies elastic trends from logs to build a low frequency model 

for input to an AVO inversion. Facies estimation was then done with the outputs of the inversion. 

Figure 3 shows the elastic properties corresponding to both approaches with filtered well logs 

overlaid. Both exhibit reasonable ties to the well logs and there is little to choose between them. 



 

The corresponding facies are shown in Figure 4.  There is more pay in the first approach, but 

again, choosing between the two would be difficult.  Figure 5 is the Confidence Index computed 

for each workflow. Clearly, the confidence in the second approach is significantly greater. 

Apparently, the formal inversion, levering on the facies from approach 1 and per-facies trends 

resulted in a more reliable result. 

  
Conclusions 

We have introduced a new Confidence Index for facies derived from Bayesian procedures 

based on the concept of entropy.  Testing on two different facies workflows showed its use in 

assessing their reliability. The method should be equally applicable to any set of probability-

oriented data such as facies generated by geostatistical processes. 
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Figure 1: Confidence Index (C.I.) is plotted vs facies                   Figure 2: Project map with the upper sand horizon  
Probability, p1 for a three-facies system where p1 is allowed       and well locations 
to vary and p2=p3. The red concave curve is C.I.   



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: On the left, elastic properties determined from the facies-first approach were combined with per-facies 
trends to build a reservoir model.  On the right are elastic properties from  AVO inversion where the low frequency 
model was derived from the figure on the left.  Filtered logs have been overlaid. The results appear quite similar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Facies on the left are from the facies-first approach while those on the right have been derived from the 
AVO inversion.  Well-derived facies have been overlaid. Agreement is good in both figures although the left contains 
more Pay facies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Confidence Index for the facies-first approach (left) is compared to that for the facies derived from the AVO 
inversion. The inversion method delivers significantly greater confidence with associated reduced risk. 


