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Summary 

Least squares reverse time migration (LSRTM) is an important technique that is starting to be 
used in the industry. LSRTM is closely related to Full-waveform Inversion (FWI) but instead of 
seeking for an optimal velocity model, it searches for an optimal reflectivity. Machine learning, 
on the other hand, has gained attention in the geophysics community and has become one of 
the most booming subjects in computer science. Various tools and methodology have been 
developed in the last few years and geophysicists have been finding applications by using these 
tools to solve more efficiently or with better quality long standing processing, imaging and 
interpretation problems. In this report, we first introduce an implementation of Born modelling 
using the recurrent neural network (RNN) and second, we perform an inversion of the model by 
training the RNN with generated data. The inversion process can be proven to be the same as 
LSRTM. The performance of different optimizers is compared and discussed. We conclude that 
the ADAM optimizer is the most stable and time efficient for this method.  

Introduction 

Most machine learning algorithms (ML) treat problems from a statistical perspective. Like linear 
regression for example, they extract features (model parameters) from the given data and learn 
how to correlate the selected features to the data (Goodfellow et al., 2016). Therefore, the 
efficiency of these algorithms is highly dependent on (1) how the features are chosen and (2) 
what role these features play in the learning process. This role depends on the structure of the 
neural network (NN). The NN structure can be thought of as the way we inject our knowledge 
into the algorithm to make the network to learn from the data. Even the most fundamental fully-
connected neural network contains injected knowledge— it needs the number of layers and the 
number of nodes to be predefined, which is related to how many orders of non-linearity need to 
be simulated. The convolution neural network (CNN), which is popular with image 
recognition/segmentation, injects the idea that a feature at a given point only depends on its 
nearby points (Fukushima, 1979; LeCun et al., 2015). This assumption greatly reduces the 
burden on the learning process compared to the fully-connected neural networks. The recurrent 
neural network (RNN) feeds in the knowledge that the output at a current state depends on the 
features at the current state and the previous states (Lipton et al., 2015). This characteristic 
makes the network time or sequence relevant and makes RNN a perfect match for a complex 
job like word recognition and natural language processing. As a general rule, the more 
knowledge is feed into the neural network (structure), the easier it can be trained.  

Most studies applying machine learning to geophysics treat the forward problem as a black box 
and select the velocity as a feature (Moseley et al., 2018). The black box idea solves the 
problem statistically, which follows the classical machine learning philosophy, but it ignores 
theoretical knowledge that has been well studied in geophysics (e.g. the wave equation and 
scattering theory). With the neglect of those crucial theories, the neural network will spend too 
much energy finding approximations to the theories by itself. The approximations are usually 
poor and highly dependent on the problem trying to solve. Some recent works in geophysics 



 

proposed that we shall inject our knowledge to the machine learning algorithm and only treat 
part of it to be a numerical problem (Karpatne et al., 2017). By following a similar idea, in this 
work we incorporated the Born approximation into the structure of the RNN.  

In this report, we attempt to add the wave propagation knowledge to an RNN. The RNN takes a 
background velocity and the source as input features. We designed the network structure from 
scratch to make the velocity perturbation to be the hidden parameter. The output of the RNN is 
a shot record. We implemented the RNN based on the APIs in TensorFlow, tested popular 
machine learning optimizers and discuss their performances.  

Theory 

The Born modelling is governed by the following equations 
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where 𝒑଴ሺ𝒙, 𝑡ሻ is the wavefield that propagate in a background velocity 𝒗଴ሺ𝒙ሻ with a source 

𝒇ሺ𝒙, 𝑡ሻ. 𝒎ሺ𝒙ሻ refers to the model parameter which is defined as 
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. 𝛿𝒑ሺ𝒙, 𝑡ሻ refers to the 

perturbation wavefield that cause by the velocity perturbation 𝒎. The sum of 𝒑଴ and 𝛿𝒑 can be 
considered as an approximation of the total wavefield 𝒑ሺ𝒙, 𝑡ሻ if 𝒎 is assumed to be small.  

Those two equations can then be implemented by RNN with the help of TensorFlow (Abadi et 
al., 2015). Figure 1 shows the RNN architecture used for this report, which is similar to the 
structure proposed by Richardson (2018). 

 
FIG. 1. The diagram of the RNN structure. The black boxes are neural cells which take the source and two previous 
perturbation wavefields to compute the next perturbation wavefields. The output of each cell is the shot record at a 

given time and the most recent two wavefields will be passed to the next cell.  

In Figure 1, the superscript ሺ𝑡ሻ denotes a variable at the 𝑡th time step. The wavefields at the 
current time step can be calculated if the previous two wavefields are known or given. With the 
wavefield at the current cell, 𝒅ሺ௧ሻ can be extracted from the wavefield and the cost function 𝐽ሺ௧ሻ 
can be calculated. Then the wavefields at ሺ𝑡ሻ and ሺ𝑡 െ 1ሻ will be forwarded to the next cell to go 
through a similar process until it reaches the maximum time step. The shot record (𝒅௖௔௟) can be 



 

formed by concatenating 𝒅ሺ௧ሻ from each cell and the cost function 𝐽 can also be computed by 
J ൌ ∑ ሺ𝒅௖௔௟ െ 𝑫ሻ୲  if a measured data (𝑫) is given. The gradient (𝜕𝐽/𝜕𝒎) can be proven to have 
the same format as an RTM, by following similar derivation in Sun et al., 2019: 
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Results 

 
FIG. 2. The inversion results of Marmousi model by RNN. a) The true model; b) The initial zero model; c) The 

estimated model at the 10th iteration with ADAM optimizer using learning rate 0.3; d) The model at the 50th iteration. 

 

FIG. 3. Cost function curves comparison of the three used methods. a) The first 200 times of loss calculations; b) a 
zoomed version of the figure a. 

The Marmousi model was used to test the Born inversion RNN. The model grid has a dimension 
of 94 ൈ 288 with a cell size of 10m. For our tests, we reduced the depth and lateral distance by 
a constant scale factor to reduce the memory usage. Otherwise, the model would need a lower 



 

dominant frequency to satisfy the dispersion condition and would result in images with poor 
resolution. Figure 2 shows the model updates obtained at selected iterations using the ADAM 
optimizer (ADAptive Moment, Kingma and Ba, 2014) with a learning rate of 𝛼 ൌ 0.03. The red 
line in Figure 3 refers to the cost function corresponding to it. The values of the cost function 
are, at the initial state equal to 1933903.87, at the 200th iteration equal to 247.67, and at the 
300th iteration equal to 101.88. Additionally to Adam method, two non-linear optimization 
methods are compared and summarized in Figure 3. The first method is Fletcher-Reeves 
conjugate gradient (FR-CG, Wright and Nocedal, 1999). It is noticeable that some severe line 
search oscillation happens in early iterations and cause it to be slow from the beginning. The 
cost is 33246.41 at the 200th function evaluation and converges extremely slow after the cost is 
minimized to around 2000. The second non-linear method in Figure 3 is Broyden–Fletcher–
Goldfarb–Shanno method (L-BFGS-B, Wright and Nocedal, 1999). There are only minor line 
search oscillations. The method is a lot faster than the FR-CG method and converges to a lower 
cost. The cost is 4044.99 at the 200th function evaluation and converges to around 300 
eventually. However, neither of the methods outperforms the ADAM optimizer. This is because 
the step length is problem-specific and gives a boost to the optimization process. 

Although the RNN implementation in TensorFlow was a convenient testing platform for this 
initial test, allowing us to take advantage of parallel CPUs and GPU acceleration, it also has 
many drawbacks. On the one hand, RNNs usually use a small number of time steps (usually 
less than a 100), because of the kind of problems it was designed for (voice recognition and 
word processing). On the other hand, it needs to use small time steps to avoid aliasing and 
distortion and to fully cover realistic models. TensorFlow saves all the functions to cache for 
each layer before starting the back-propagation, but in the kind of problems discussed in this 
report there are too many variables. For a typical horizontal layered model, though the actual 
training progress is fast, it takes 10 gigabytes of memory and usually needs 15 min to 20 min 
just for the initial setup. This disadvantage may be avoided by designing a more suitable neural 
network structure or by transforming the time domain into the frequency domain to reduce the 
number of layers in RNN.  

Conclusions 

The Born modelling can be successfully implemented using RNN with TensorFlow. Then, by 
feeding a theoretical data to the RNN built, the model can be inverted by backpropagation of the 
RNN. This operation can be proven to be the same as the LSRTM formulation. We found the 
ADAM method seems to be the most efficient optimizer, but it requires to be extra careful when 
choosing the hyper-parameters. The second efficient optimizer is L-BFGS-B, which does not 
take extra hyper-parameters. The least efficient optimizer in our tests is the FR-CG, which 
spends much time in line searching and hence causes too many perturbations to the loss curve. 
The overall computing performance is good but TensorFlow takes too much time and memory 
to build the network before the back-propagation. In the future, we are interested in bringing this 
method to the frequency domain and looking for a more suitable neural network structure for 
wave propagation. 
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