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Summary

Time-lapse seismic studies traditionally require replication in baseline and monitor surveys to mini-
mize uncertainty in interpretation of 4D changes. Rather than adhere to this requirement, we present
an alternative approach to 4D data analysis that does require survey replication. We show that re-
covery of high-fidelity vintages and time-lapse difference is achieveable from randomly subsampled
time-lapse data that has been acquired from two non-replicated baseline and monitor survey. Our
method leverages common information in time-lapse vintages during processing and inversion to
extract 4D attributes. We achieve this result by using the fact that different time-lapse data share
information and that non-replicated acquisitions can add information when prestack data are recov-
ered jointly using a joint sparsity model from distributed compressive sensing. Finally, we show an
application of the proposed model to full-waveform inversion of time-lapse data.

Introduction

Time-lapse (4D) seismic studies involve the acquisition, processing and interpretation of multiple seis-
mic surveys over a period of time. It has been applied for reservoir monitoring and CO2 sequestration
(Lumley, 2001, 2010). To minimize uncertainty in 4D analysis and interpretation, an important but
technically challenging requirement is replicability in the time-lapse (baseline and monitor) surveys
(Porter-Hirsche and Hirsche, 1998). Various approaches have been proposed to meet this require-
ment from the acquisition (Eiken et al., 2003; Eggenberger et al., 2014) and processing point of view
(Ross et al., 1997; Ross and Altan, 1997; Rickett and Lumley, 2001; Houck, 2007).

To mitigate the requirement to replicate 4D surveys, we present a new approach that has the benefit
of reducing cost of time-lapse surveys and does not rely on survey replication (Oghenekohwo et al.,
2017; Wason et al., 2017). Our approach derives from the field of distributed compressive sensing
(Baron et al., 2009). This new approach addresses 4D acquisition- and processing-related issues
by exploiting common information shared by the different time-lapse vintages. To this end, we con-
sider time-lapse acquisition as an inversion problem, which produces finely sampled prestack data
from randomly subsampled baseline and monitor measurements. We conclude by adapting the pro-
posed model to full-waveform inversion of time-lapse data and show that our method can minimize
uncertainty in interpreting 4D images/models.

Theory

Consider an inverse problem of the form Fm = b; where b is observed data; F is a matrix or an
operator depending on the application, and m is a model to be estimated given F and b. Furthermore,
suppose x is some representation of the model m in a transform domain C such as curvelets (Candes
et al., 2006) or Fourier, i.e. m = CTx, T being the transpose. If it is known apriori that x is sparse or
compressible, a solution m̃ to the inverse problem (assume F is linear) can be found by solving the
following sparsity-promoting program also known as basis-pursuit (BP)

BP : x̃ = argmin
x
‖x‖1 subject to Ax = b;A = FCT; (1)
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This inverse problem for model parameters or a signal x is common in many areas including compres-
sive sensing (CS, Donoho, 2006; Candes and Tao, 2006). Several applications of CS to problems
in seismic have also been reported by many authors (Hennenfent and Herrmann, 2008; Herrmann,
2010; Mansour et al., 2012; Wason and Herrmann, 2013), including field data studies (Mosher et al.,
2014).

For time-lapse studies, we borrow ideas from the field of distributed compressive sensing (DCS)
where a joint sparsity model (JSM-1) that exploits structures in signals was proposed (Baron et al.,
2009). The idea is that certain class of signals possess both intra- and inter-correlations that can be
exploited during recovery (processing) of the signal. The JSM, which is captured by both equations
(2) and (3), models J ≥ 2 signals such that each of the signals share a common sparse part z0, and
possess sparse “innovations” z j for j ∈ 1,2, ...,n with respect to this common part that is shared by n
processes/experiments. Note that n is also the number of signals in the signal ensemble, which is a
collection or group of signals sharing common information.

x j = z0 + z j, j ∈ 1,2. (2)

This means that for an experiment involving two processes, such as time-lapse seismic acquisition
of a baseline and monitor survey, we end up with three unknown vectors.[

b1
b2

]
=

[
A1 A1 0
A2 0 A2

]z0
z1
z2

 , or

b = Az.

(3)

In this expression, A, forms a concatenation of matrices linking the observations of the individual ex-
periments to the common component and innovations pertaining to the different processes. As stated
previously, the above JSM readily extends to J > 2 experiments, yielding a J× (number of processes+
1) system. Rather than solving for each x independently as in equation (1), the JSM solves for all the
x’s simultaneously via the following equation :

BPJSM : z̃ = argmin
z
‖z‖1 subject to b = Az. (4)

By casting recovery of such signals in this form and imposing a joint sparsity constraint on the solution
of equation (4), the JSM gives better signals with high fidelity. To solve equations (1) and (4), we use
the software package SPG`1(Van Den Berg and Friedlander, 2008).

In the next section, we present results from application of the JSM to two problems: (i) prestack
time-lapse data recovery from data acquired via simultaneous sources (Oghenekohwo et al., 2017;
Wason et al., 2017) (ii) full-waveform inversion (FWI) of time-lapse data. The first example pertains
to recovery of time-lapse data acquired with simultaneous (time-jittered) sources, a method first pro-
posed by Wason and Herrmann (2013). The second example pertains to applying FWI on time-lapse
data using the modified Gauss-Newton (mGN) method proposed by Li et al. (2012). In this case, we
incorporated the JSM into mGN as shown by Oghenekohwo et al. (2015).

Example 1

In this example, the observed data is compressed by a factor of 4, thereby reducing the cost of data
acquisition. Thereafter, recovery of the conventional prestack data is peformed with/without the JSM.
Figure 1 shows the result of this exercise. Figure 1(c) and 1(d) show the observed data obtained
from non-replicated acquisition geometries. The time-lapse signal recovered with the JSM, Figure
1(h), is more accurate than the signal recovered without the JSM, Figure 1(f). Finally, we compare
the poststack recovered time-lapse signals in Figure 2 that highlights the efficacy of the proposed
method.
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(e) (f) (g) (h)

Figure 1: Time-lapse acquisition results. (a) Conventional data (b) True difference. (c) Compressively
sampled (sim. src) baseline data (d) Compressively sampled (sim. src) monitor (e) Recovered data
w/o JSM (f) Recovered difference w/o JSM (g) Recovered data w/ JSM (h) Recovered difference w/
JSM.

Example 2
The second example involves an application of the JSM to time-lapse FWI. Here, we perform an
acoustic frequency-domain inversion for the baseline and monitor velocities. The time-lapse velocity
difference is simply obtained by subtracting the inverted monitor from the baseline model. Figure
3(a) shows the true baseline, monitor and difference. Figure 3(b) shows the inversion result without
applying JSM, whereby one simply inverts for the baseline and monitor in parallel before subtraction.

Discussion/Conclusion
Contrary to the prescribed requirement for time-lapse surveys to be replicated, a key feature of the
joint sparsity model is that the matrices A1 and A2 describing the acquisition geometries in equation
(3) do not have to be equal. Another implication of the JSM is that fewer measurements are needed to
reconstruct the entire ensemble of signals, which drives down the total acquisition cost. Theoretically,
as the number of jointly sparse signals to be recovered increases, only a few data samples need to
be collected to ensure accurate recovery. Details of the proof can be found in Baron et al. (2009).
Recent application of the JSM to noise atenuation (Tian et al., 2018) and for improving 4D seismic

GeoConvention 2019 3



(a) (b) (c)

Figure 2: Poststack results (a) True time-lapse difference (b) Difference without JSM (c) Difference
with JSM.

(a) (b) (c)

Figure 3: Time-lapse FWI Results. (a) True baseline, monitor and difference (b) Inverted baseline,
monitor and difference without using the JSM (c)Inverted baseline, monitor and difference with the
JSM.

interpretability (Wei et al., 2018) further demonstrate the practical relevance of the model to time-
lapse seismic studies.

We have presented a model/method for processing and inversion of time-lapse data that uses in-
formation from the vintages. We show that time-lapse data is comprised of a common part and
innovations that can be exploited during processing or inversion to produce high-fidelity vintages and
time-lapse difference volumes with less uncertainty. A prime conclusion of the proposed method is
the opportunity to relax the requirement for time-lapse surveys to be replicated.
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