1. INTRODUCTION. By nature, geomodeling relies heavily on the mathematical techniques implemented in geomodeling packages. However, we are blinded by how powerful these algorithms have become. 3D modelling (1), also known as volume-based modeling (2), allows us to model even the most complex fault network without the burden of hour-long runs (3). This approach also provides us with new tools for restoring the structure (3), even restoring the 3D seismic cube, which help us in interpreting. Geoscientists have evolved too, software companies have implemented much-usable geostatistics (4) in their geomodeling packages. If anything, our challenge nowadays as geomodelers is to pick the right tools out of this massive toolbox that geomodeling packages have become.

But beyond the marvels— and the remaining challenges — that geomodeling has become, building a geomodel fundamentally remains a team project in which the geomodeller must collaborate with other stakeholders to ensure the geomodel captures all the relevant data and understanding of the reservoir while providing an answer to the problems the team has to solve. In this paragraph we talk about people who help with engineers and concern things such as production rates and the reservoir can be produced. All of this is further supervised and observed by other stakeholders such as the asset team manager and the other teams and managers, who do not project their own vision, work, and decisions.

To be efficient, a geomodeller must not only master his core technique but also more important, has to master project management and team work. This poster focuses on team work, more specifically on how to optimise the communication with the other stakeholders.

2. ARE 3D VIEWS REALLY THE BEST WAY TO COMMUNICATE ABOUT A MODEL? Geoscientists built 3D grids. And yet, using only pictures of 3D views of such models is not always enough to communicate about a model. As a general rule, if some pictures are meant for an audience to which the author don’t want to share too much technical details, 3D views might be enough. But if the audience is more technical and concerned about (and so more likely to agree with) what lead to all the decisions architecture should be connected from well to well, secondly, they can do it in their own packages. The 3D views are working in front of geomodeling package, but two geoscientists working together and in parallel in their respective packages, we can see in Figure 1, 2 and 3, taken from Figure 18 of (6). The authors’figure (FIG 1) combines a 3D view of the reservoir, but at the cost of having a hard time building a 3D seismic cube, which help us interpreting. Geoscientists have evolved too, software companies have implemented much-usable geostatistics (4) in their geomodeling packages. If anything, our challenge nowadays as geomodelers is to pick the right tools out of this massive toolbox that geomodeling packages have become.

3. ENGAGE THE OTHER STAKEHOLDERS DURING THE GEOMODELLING WORK ITSELF. Geoscientists built 3D grids. And yet, using only pictures of 3D views of such models is not always enough to communicate about a model. As a general rule, if some pictures are meant for an audience to which the author don’t want to share too much technical details, 3D views might be enough. But if the audience is more technical and concerned about (and so more likely to agree with) what lead to all the decisions architecture should be connected from well to well, secondly, they can do it in their own packages. The 3D views are working in front of geomodeling package, but two geoscientists working together and in parallel in their respective packages, we can see in Figure 1, 2 and 3, taken from Figure 18 of (6). The authors’figure (FIG 1) combines a 3D view of the reservoir, but at the cost of having a hard time building a 3D seismic cube, which help us interpreting. Geoscientists have evolved too, software companies have implemented much-usable geostatistics (4) in their geomodeling packages. If anything, our challenge nowadays as geomodelers is to pick the right tools out of this massive toolbox that geomodeling packages have become.

4. GETTING INVOLVED IN OTHER TEAM MEMBERS’ WORK. Geoscientists built 3D grids. And yet, using only pictures of 3D views of such models is not always enough to communicate about a model. As a general rule, if some pictures are meant for an audience to which the author don’t want to share too much technical details, 3D views might be enough. But if the audience is more technical and concerned about (and so more likely to agree with) what lead to all the decisions architecture should be connected from well to well, secondly, they can do it in their own packages. The 3D views are working in front of geomodeling package, but two geoscientists working together and in parallel in their respective packages, we can see in Figure 1, 2 and 3, taken from Figure 18 of (6). The authors’figure (FIG 1) combines a 3D view of the reservoir, but at the cost of having a hard time building a 3D seismic cube, which help us interpreting. Geoscientists have evolved too, software companies have implemented much-usable geostatistics (4) in their geomodeling packages. If anything, our challenge nowadays as geomodelers is to pick the right tools out of this massive toolbox that geomodeling packages have become.

5. CONCLUSION. Geoscientists built 3D grids. And yet, using only pictures of 3D views of such models is not always enough to communicate about a model. As a general rule, if some pictures are meant for an audience to which the author don’t want to share too much technical details, 3D views might be enough. But if the audience is more technical and concerned about (and so more likely to agree with) what lead to all the decisions architecture should be connected from well to well, secondly, they can do it in their own packages. The 3D views are working in front of geomodeling package, but two geoscientists working together and in parallel in their respective packages, we can see in Figure 1, 2 and 3, taken from Figure 18 of (6). The authors’figure (FIG 1) combines a 3D view of the reservoir, but at the cost of having a hard time building a 3D seismic cube, which help us interpreting. Geoscientists have evolved too, software companies have implemented much-usable geostatistics (4) in their geomodeling packages. If anything, our challenge nowadays as geomodelers is to pick the right tools out of this massive toolbox that geomodeling packages have become.

REFERENCES.


