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Summary

In the classical theory of analytic signals, a trace is decomposed into an amplitude envelope and
a phase via the Hilbert transform. However, this is a trace-by-trace process that does reflect multi-
trace patterns that exist in 3D seismic data cubes. In this work we present the use of the 3D Riesz
transform to calculate a 3D analytic signal for attribute analysis of seismic cubes.

Introduction

In Taner et al. (1979) a complex trace is obtained from a real valued trace (f(r)) summing the initial
signal plus its purely imaginary, /2 phase rotated quadrature (fx(¢)). The quadrature is obtained
from the initial data applying a Hilbert transform. In frequency domain, the Hilbert transform is given
by the sign function of the frequency (@) multiplied by the input trace spectrum. This operator is
nothing but a fractional differential operator (Chopra and Marfurt, 2007), meaning
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However, this decomposition is not adequate for a 2D or 3D signal, since there are two or three
directions, respectively, along which the frequency or wavenumber changes sign. In this work we
present an extension of our previous work on the 2D Riesz transforms (Manzanilla-Saavedra and
Sacchi, 2018) to 3D seismic data sets.

Theory

Let a seismic 3D gather or seismic cube, and its Fourier transform, represented by f(x;,x2,x3) and
F(ki,k2,k3). The variable x, can represent depth or time and, consequency, ks can represent vertical
wavenumber of temporal frequency. Similarly, we define the position and wavenumber vectors x =
(x1,x2,x3) and k = (ki,k2,k3), respectively. The quadrature cube in the j-th direction is obtained by
multiplying the initial data cube in frequency domain, element by element, times the Riesz kernel
—i‘% with j = 1,2,3 and |k| = v/k1> + k> +k3>. Hence, the Riesz transform is similar to the Hilbert
transform in the sense that it is also a fractional differential operator (Chenouard and Unser, 2012)
and it is given by
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where the symbol x represent convolution. Each quadrature cube j is of the same size than the initial
data, and beyond its differential nature, it has the advantage of not emphasizing high frequencies
given the low pass ﬁ term. We now define a vector field (for the sake of brevity Riesz vector), that is
collinear with the gradient vector field, and normal to the reflector surfaces in the data

g(x) = 9_1{“1(} «Vf(x) = (A"(x), 2" (x), 5" (x)) (3)

Let the first order structure tensor S(x) be a 3 x 3 symmetric matrix that can be evaluated at each
position in the cube x

S(x) = E[g(x)" g(x)] (4)



The expected value (E[.]) of the outer product g(x)”g(x) is replaced by a weighted average in the
vicinity of the central point x. A spherical Gaussian smoothing kernel was used as weighting function
(Wu, 2017). We extract the 3 eigenvalues of the tensor S(x) to define coherence (Chenouard and
Unser, 2012) , o1, 0, and o3
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The coherence coefficient, C(x), is a measure of how flat the reflectors are, and hence a measure
of continuity along a chosen time slice. If the reflector is flat in the vicinity of a given sample the
structure tensor becomes rank one and only one singular vector and one singular value explain the
Riesz vector in the surroundings of that sample, meaning o, (x) > 0,(x), 03(x) and the coherence is
nearly one. On the contrary when reflectors depart from a flat surface or there is no structure in the
amplitude distribution, all singular vectors are needed to explain the Riesz vector orientation and the
coherence drops to zero.
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Figure 1: Coherence for the 0.9(s) time slice. Low coherence is observed around the channel since
it is not contained in the reflector plane, specially around its levees.
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Figure 2: Coherence for the 2.1(s) time slice. Low coherence is observed around the channel since
it is not contained in the reflector plane, specially around its levees.
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Results

As examples, we present two target time slices of a migrated data cube of the Western Canadian
Basin. The 3D Riesz transform operator is used to estimate the local coherence coefficients for the
two target slices. Figure 1a is the time slide extracted at 0.9s from the 3D cube with its associated
coherence displayed in Figure 1b. In the coherence time slice, the channel levees and the boundaries
of reflectors show very low coherence features as these structures, depart from a flat surface. We
repeat the analysis for a time slide at 2.1s and portray the time slice and its coherence in Figures 2a
and b, respectively.

Conclusion

We presented an application of the 3D Riesz transform as a fractional differential operator and used
it to generate a coherence cube. The Riesz transform allows to define an operator with similar prop-
erties to conventional differential operators with the added advantage of having a higher tolerance to
noise given the fact that it does not enhance the high frequency content
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