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Summary

The conventional fluid substitution consists in predicting the bulk elastic modulus of an isotropic
saturated rock (Ky) by using Gassmann’s equation with fixed elastic moduli of solid grains (Ks),
and the drained frame (Kp) but variable modulus of the pore fluid (Kr). By assuming “modified”
(complex-valued and frequency-dependent) moduli K and sometimes K; , such substitution is

often also used to model the attenuation and wave-velocity dispersion in fluid-saturated porous
rock. However, the use of frequency-dependent quantities in Gassmann’s and related equations
may be inaccurate, because this method only represents heuristic extension of certain known
formulas outside of their scopes of validity. To obtain a rigorous and reliable fluid-substitution
method, we note that Gassmann’s equation follows from a much broader principle, which
consists in matrix character of the elastic, anelastic, and inertial properties of most materials.
This principle was recently utilized in the so-called General Linear Solid (GLS) model based on
Lagrangian continuum mechanics.

By using the GLS approach, fluid substitution can be performed by constructing time- and
frequency-independent models of porous rock with variable K:;. Such models can be used to
explain any mechanical experiment with this rock, and in particular, for accurate modeling of
attenuation and dispersion effects in boundless media or bodies of arbitrary shapes. As an
example, a detailed fluid substitution model for Berea sandstone is inverted from published low-
frequency attenuation/dispersion data. The new model can be extended to media with double or
multiple porosities and used in many applications.

Introduction

When the properties of the fluid within the pores of a reservoir rock are changed, the saturated
(“undrained”) bulk modulus Ky of the rock changes accordingly. This change in Ky leads to
changing velocities and attenuation of seismic waves, which can further be used for identifying
the reservoir, inverting for its properties, or monitoring its time-lapse variations during, for
example, water or CO- injection. The method that is commonly used for relating the changes
in Ky to the type and amount of fluid within its pores is the Gassmann’s equation (1951). This
equation is based on assuming that the porous medium is elastic, monomineralic, and
homogeneous. The fundamental meaning of Gassmann’s equation consists in the existence of
only three independent elastic properties of the material (the solid-grain (Ks), drained (Kp), and
fluid moduli (Kr)), so that the undrained modulus Ky can always be derived from them
(Berryman, 1999). Morozov and Deng (2016, 2018) emphasized that these three independent
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variables comprise a symmetric 2x2 matrix KB of elastic moduli. Therefore, Gassmann’s
equation represents only one of the consequences of this matrix character of the elastic bulk
modulus for a two-phase medium.

Although Gassmann’s equation was only derived for elasto-statics (Gassmann, 1951), it is often
extended far beyond its domain, to predicting the frequency-dependent, complex-valued
undrained modulus (denoted K, here), which is used to describe the seismic-wave attenuation

and velocity dispersion in fluid-saturated rock. For example, Gurevich et al. (2010) utilized a
modified frequency-dependent (drained) rock-frame modulus K to predict the fully-saturated

bulk modulus dispersion due to squirt-flow effects, and Mavko (2013) assumed a viscoelastic
modulus K] in the same way. However, such use of Gassmann’s equation is only heuristic

extrapolation of formulas to complex-valued material properties, not supported by physics, and
the results of this extrapolation should not be accurate.

It is therefore desirable to obtain a rigorous, physically-consistent model of fluid substitution at
nonzero frequencies. In this paper, we propose such an approach based on the General Linear
Solid (GLS) framework by Morozov and Deng (2016). The model is quite general and should be
applicable to most types of porous rock (Deng and Morozov, Geophysics, forthcoming).

Theory

In the GLS formulation (Morozov and Deng, 2016), the complete Biot’s (1956) poroelastic theory
is described by giving the Lagrangian density function (denoted LB below) and the dissipation
pseudo-potential (DB) as algebraic quadratic forms with respect to a two-component vector-
variable field u(x,t):

L {u(x,t)} =%l&p81&—(%ATKBA+%pB%}], O
D {u(x.t)} = 5 dic,

where the lowercase indices i, j =1,2,3 (or Xx,y,z) denote the spatial coordinates, summations
over repeated spatial indices are implied, matrix (boldface) notation is used with respect to the
two-dimensional model space, and the superscripts " denote matrix transposes. The model
vector u comprises two 3D spatial vectors denoted uj, where the uppercase subscript J=1 or 2
stands for the model space. The spatial vector uj; is the observable displacement of the fluid-
saturated rock, and ux denotes the relative filtration-fluid displacement multiplied by the initial-
state (invariant) porosity ¢: u,, E_¢(uif'“‘d —Uu)- The model-space vector A = g is the volumetric

strain, and the zero-trace spatial tensor (vector in model space) & =g, —AJ; /3 is the deviatoric

strain. The 2x2 material-property matrices K® (bulk moduli), u® (elastic moduli), p® (density)
and d (Darcy friction) were given by Bourbié et al. (1987) and Morozov and Deng (2016). The
conventional empirical bulk moduli Ks, Kp, Ky, and K;, the Biot-Willis parameter «, poroelastic
modulus M, Skempton coefficients, and Gassmann’s equation are all contained in matrix K&
(Bourbié et al., 1987).
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In addition to Biot’s model (1), we also consider an additional scalar-variable vector 6 describing
some internal deformations of the rock frame, such as dilatations of micropores or relative
movements of mineral grains. Considering only “local” bulk deformations such as caused by
squirt flows (Gurevich et al. 2010), the most general extension of Biot's model (1) becomes
(Deng and Morozov, Geophysics, forthcoming):

L=LB—%9TP9+ATQO,

2
D= DB+%§£11§§C+%&P'§L§£Q'§,¢

where the 2x2 matrix nE describes the solid viscosity for Biot's rock (Deng and Morozov, 2016),

the NxN matrix P describes the elastic (free) energy of the internal deformations 0, the 2xN
matrix Q describes its elastic coupling to Biot’'s volumetric strains (A), and matrices P’ and Q'
have similar meanings for viscosity and viscous coupling. In the absence of additional
constraints, the elements of vector 6 are subject to several linear transformations and scaling.
By using this arbitrary scaling, variables 6 are selected so that the matrix P is diagonal with
elements P, =K, for any J.

The quadratic functional forms (2) allow straightforward derivations of all equations of motion for
the anelastic rock, which further allow computation of the wavemodes and velocity-dispersion
and attenuation spectra by means of (relatively) simple matrix calculations (Morozov and
Deng, 2016, 2018). By fitting the predicted spectra to the results of low-frequency laboratory

observations, elements of matrices K&, nﬁ , Q, P" and Q' can be obtained by nonlinear

inversion, as outlined in the next section. The mechanical model can also be used for
implementing finite-difference wavefield simulations and in many other applications.

Results

In this section, we invert for material properties Kp (included in KB), Q, and P’ from low-
frequency, Young’s modulus attenuation/dispersion experiments with Berea sandstone reported
by Tisato and Quintal (2013). Similar to these authors, the data were first transformed into bulk-
modulus data assuming a constant shear modulus . The resulting frequency-dependent data
(“effective”, or apparent; see Morozov and Baharvand Ahmadi, 2015) for bulk-modulus
dispersion (|K; (f)|) and attenuation (Q(f)) are shown by blue lines in Figure 1. The data were

acquired at three water saturation levels of s, = 62.4%, 86.6%, and 97.1% (Tisato and
Quintal, 2013; Figure 1). Consequently, the variations of saturation can be viewed as fluid
substitutions, with K given by Reuss averages of water and gas moduli

K, = [SWKV;1 +(1-s,) Kg*]*l. Note that the variations of the effective K for the tree levels of s, are
substantial (Table 1), and so the three effective "fluids” are contrasting to each other.

By inverting for the mechanical model (2) with four variables 6, (J =1, 2, 3, 4), we obtained
models (Table 1) closely fitting the observations, particularly for larger saturations (red lines in
Figure 1). All elastic properties of this model are fluid- (saturation-) independent (Table 1), which
means that this model could be useful for quantitative modeling of geomechanical properties of
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this reservoir with any fluid. At the same time, viscous properties (elements of matrix P'; Table 1)
show substantial variations between the three saturation levels or fluids. This observation

suggests tha the viscosity of the drained rock is still caused by trapped fluid within it.

Conclusions

A macroscopic model of fluid-saturated rock is developed based on the Lagrangian “General
Linear Solid” (GLS) wave-mechanics framework proposed earlier. The model is illustrated by
inverting low-frequency laboratory experiments with Berea sandstone. The resulting mechanical
model is suitable for implementing wavefield simulations and for performing rigorous fluid
substitution without assumptions about the validity of using viscoelastic moduli in Gassmann’s

equations.

Table 1. Mechanical properties of Berea sandstone
derived from experimental data by Tisato and Quintal (2013)

Saturation-independent properties sw=97.1% Sw=86.6% Sw=62.4%
Ks (GPa) Py (Kao) [GPa] Qu [GPa] | J(variable #) P’y [GPa-s] P’y [GPa:-s] P’y [GPa:-s]
36 2.60 0.84 1 15.990 0.217 1.478e3
1.03 2 0.191 0.019 0.279
1.05 3 0.028 3.97e-4 0.005
4.17 4 0.001 3.26e-4 1.758e-5
Effective fluid modulus (GPa) 3.0e-3 7.46e-4 2.659¢e-4
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Figure 1. Dynamic fluid saturation results at 62.4%, 86.6% and 97.1% water saturation respectively. Blue lines are
the experimental data by Tisato and Quintal (2013), and red lines are the predictions of the present model.

Acknowledgements

We thank Wubing Deng for the idea of this research and for estimating material properties in

Table 1.

GeoConvention 2019




References

Berryman, J. G., 1999, Origin of Gassmann's equations: Geophysics, 64, 1627-1629, doi: 10.1190/1.1444667.

Biot, M. A. 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range:
Journal of the Acoustical Society of America, 28, no. 2,168-178, doi: 10.1121/1.1908239.

Bourhié, T., O. Coussy, and B. Zinszner. 1987, Acoustics of porous media: Editions Technip. Paris, France.

Deng, W., and |. B. Morozov, 2016, Solid viscosity of fluid-saturated porous rock with squirt flows at seismic
frequencies: Geophysics, 81, no. 4, D395-D404, doi: 10.1190/ge02015-0406.1

Deng, W., and |. B. Morozov, Macroscopic mechanical properties of fluid-saturated porous rock, Geophysics,
forthcoming

Gassmann, F., 1951, Uber die Elastizitat poréser Medien: Mitteilungen aus dem Institut fiir Geophysik (Zurich), 17, 1—
23.

Gurevich, B., D. Makarynska, O. B. de Paula, and M. Pervukhina, 2010, A simple model for squirt-flow dispersion and
attenuation in fluid-saturated granular rocks: Geophysics, 75, no. 6, N109—-N120, doi: 10.1190/1.3509782.

Mavko, G., 2013, Relaxation shift in rocks containing viscoelastic pore fluids: Geophysics, 78, M19-M28, doi:
10.1190/GEO2012-0272.1.

Morozov, I.B. and A. Baharvand Ahmadi, 2015. Taxonomy of Q, Geophysics 80, No. 1, T41-T49.

Morozov, I. B. and W. Deng, 2016. Macroscopic framework for viscoelasticity, poroelasticity, and wave-induced fluid
flows—Part 1: General linear solid, Geophysics, 81, No. 1, L1-L13.

Morozov, I. B. and W. Deng, 2018. Inversion for Biot-consistent material properties in subresonant oscillation
experiments with fluid-saturated porous rock, Geophysics, 83(2), MR67-MR79.

Tisato, N., and B. Quintal, 2013, Measurements of seismic attenuation and transient fluid pressure in partially
saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale: Geophysical Journal
International, 195, 342—-351, doi: 10.1093/gji/ggt259

GeoConvention 2019



