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Summary 

The modelling of an interbedded shale barrier in heterogeneous oil sands reservoirs has high 
uncertainty, which has a critical impact on the steam-assisted gravity drainage (SAGD) 
performance. Generally, an interpretation of 4D seismic data is the most widely used method for 
understanding the uncertainty of the shale barrier size. However, the 4D seismic data 
interpretation incurs additional cost during long term operation. In this study, the neural network 
models were developed to predict the size and horizontal location of shale barrier using reservoir 
parameters and the SAGD production data without utilizing a 4D seismic data interpretation. 
The R2 results showed that the neural network model for predicting width (0.85) and length (0.93) 
of shale barrier are high, while the horizontal location neural network model is as low as 0.65. 
This neural network model would be very helpful for evaluating the uncertainty of the size and 
horizontal location of shale barrier, updating the existing static reservoir model, and optimizing the 
recovery processes by incorporating observation well data as well as 4 D seismic data 
interpretation. 
 

Introduction 

The steam-assisted gravity drainage (SAGD) process, was first development by Roger Butler, 
has been used for one of the most promising in-situ recovery methods to produce oil sands 
(Butler et al., 1981). The SAGD performance is affected significantly by the low permeability 
layers and flow barriers, such as the shale barrier depending on their width, length, and vertical 
location in heterogeneous oil sands reservoirs because it tends to interrupt the development of 
steam chambers (Shin and Choe, 2009). 
The thickness and vertical location of a shale barrier can be defined from the well-logging data, 
but the uncertainty of its size and location exists in a shale interbedded oil sands reservoir, as 
shown in Fig. 1. Generally, the interpretation of the 4D seismic data is the most widely used 
method for understanding the uncertainty of the shale barrier size. However, the 4D seismic data 
interpretation incurs additional cost during long term operation to monitor steam chamber 
development. Therefore, it is necessary to develop methods to predict the shale barrier size and 
location without utilizing 4D seismic data interpretations. Kim and Shin (2018) performed a 
statistical approach to predict the shale barrier size using the reservoir parameters and the SAGD 
production data without using 4D seismic data interpretation, but the horizontal location of shale 
barrier was not considered. 
The aim of this study is to develop the neural network model for predicting the size and horizontal 
location of shale barrier using the reservoir parameters and the SAGD production data without 
using 4D seismic data interpretation. 
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Fig. 1. Uncertainty of the shale size and location such as WD, LN, and VL (Kim and Shin, 2018). 

 

Theory / Method / Workflow 

Fig. 2 shows the steam chamber development for both clean and interbedded shale reservoirs, 
especially, steam in shale interbedded oil sands reservoirs reaches the shale barrier and detours 
around it. The SAGD production and steam-oil ratio (SOR) curves in shale interbedded oil sands 
reservoirs are different from those of clean oil sands reservoirs due to the steam detouring at the 
shale barrier location. In a shale interbedded oil sands reservoir, the SAGD production data such 
as the oil rate and SOR increase up to a peak point and decreases down to a trough point again, 
and the points are called inflection points (IP) (Kim and Shin, 2018). As shown in Fig. 3, the 
characteristics of these IPs are as follows: (1) first production peak (FPP) is the time impeding the 
development of the steam chamber for the first time; (2) first production trough (FPT) is the time 
that the steam detours around the shale barrier in the shale width direction for the first time; (3) 
second production peak (SPP) is the time that the steam chamber is extended to cover the shale 
barrier except for the center above the shale barrier; (4) MXS is the maximum SOR until the 
steam is detoured; and (5) MNS is the minimum SOR. 
If the width and left location of shale barrier are different and right location of shale barrier is same 
as shown in Fig. 4, the SAGD production curves before the FPT are the same. Therefore, it is 
difficult to estimate the horizontal location of shale barrier only using IPs of SAGD production data 
in the previous study. In this study, we considered the additional production data for 6, 12, 18, 24 
months after passing the FPT point. 
 
 

  

(a) (b) 

Fig. 2. Development of steam chambers for (a) clean and (b) shale interbedded oil sands reservoirs (Kim and Shin, 2018). 
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Fig. 3. IPs during the SAGD production in the shale interbedded oil sands reservoir. 

 

 

Fig. 4. Comparison of SAGD production curves for various width and horizontal location of shale barrier. 

 

 

Results, Observations, Conclusions 

To develop the neural network models for predicting the width, length, and horizontal location of 
shale barrier, a Latin hypercube sampling (LHS) was performed using CMG’s CMOST to produce 
1000 evenly distributed simulation runs. The neural network models are implemented in Python 
3.6 using Pandas, Numpy, Tensorflow, and Keras. We use the reservoir parameters, SAGD 
production data, and thickness and vertical location of shale barrier to train the neural network 
models for predicting the width, length, and horizontal location of shale barrier. The loss and 
activation function used in the neural network models are mean absolute error and Relu. The R2 
results showed that the neural network model for predicting width (0.85) and length (0.93) of 
shale barrier are high, while the horizontal location neural network model is as low as 0.65 (Table 
1). 
The neural network models would be very helpful for evaluating the uncertainty of the size and 
horizontal location of shale barrier, updating the existing static reservoir model, and optimizing the 
recovery processes by incorporating observation well data as well as 4 D seismic data 
interpretation. 
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Table 1. Statistical results for the neural network models for predicting the width, length, and horizontal location of shale 

barrier 

Models Train_loss Test_loss Train_R2 Test_R2 

Shale Width 0.081 0.088 0.85 0.69 

Shale Length 0.084 0.086 0.93 0.87 

Horizontal Location of Shale 0.120 0.147 0.65 0.25 
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