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Summary 

In recent years, interest in shale plays has grown substantially due to horizontal drilling and hydraulic 
fracturing techniques. Special interest is in shale plays previously exhausted with vertical wells that are 
believed to still have high potential if developed with horizontal wells. However, with drilling costs at an 
all-time high, choosing the right locations for new wells is a crucial issue. Therefore, identifying so called 
“sweet spots” with high potential for oil and gas is of great importance for oil companies worldwide.  
 
Well log data from millions of wells drilled using conventional techniques since the industry’s inception is 
available and generally not used. In this paper, we propose a data analytical solution that 1) 
automatically extracts simple features from complex and high-dimensional well log curves arising from 
vertical wells using functional Principal Component Analysis (fPCA), and 2) builds models that predict 
sweet spots in shale plays by correlating extracted features with production data from horizontal wells. 
Our solution builds predictive models for production directly using previous production data and 
petrophysical well logs alone, thus circumventing time consuming and expensive geological analysis. 
 
In this paper we present a method involving 3 analytical components: Functional Principal Components 
Analysis (FPCA), Kriging, and Multiple Linear Regression. Since both kriging and multiple linear 
regression are well-established methods in Geostatistics we simply point to the references Cressie, N. 
(1993), for kriging, and Cohen, J. et al. (2003), for multiple linear regression. Using petrophysical well 
logs and geological core, the shale properties can be evaluated around the boreholes of drilled vertical 
wells as with reference to Passey, Q.R. et al. (1990). 
 
The methodology was applied to well log data from 2020 vertical wells and production data from 702 
horizontal wells in a single field. In predicting whether a given horizontal well has production above a 
given high-production threshold, we were able to achieve an accuracy of 90% for gas wells, and 71% for 
oil wells.  
 

Theory 

Regression in conjunction with interpolation (Regression-Kriging) is a well-known approach that can be 
used to correlate well log curves with production data. However, this method is only applicable once the 
set of (one-dimensional) predictors and the corresponding regression model have been defined. 
Summary statistics such as means, maximum or minimum peak heights are obvious candidates but are 
too simple to capture all the relevant features from the well logs. Instead, we extract a set of one-
dimensional features from each of the well log curves, facilitating simple 2D interpolations as opposed to 
more difficult 3D interpolations. This is particularly advantageous in situations where seismic data are not 
available and 3D interpolations are challenging. Finally, by regressing previous production data from 
horizontal wells on the extracted features we show that it is possible to predict production at new 
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locations directly. We have implemented our method using the R statistical package. We tested it using 
well log data from 2020 vertical wells and production data from 702 horizontal wells in a single field. For 
gas we get an accuracy of 90% at predicting whether a given horizontal well has production above a 
given high-production threshold, while for oil, we get an accuracy of 71%. 

 
The main novelty of our method is the systematic extraction of one-dimensional predictors using a 
statistically robust method called functional Principal Components Analysis (fPCA). To the best of our 
knowledge this is the first time fPCA is applied to well log curves in the context of oil and gas exploration. 
 
Geological and petrophysical studies have shown that identification of shale plays sweet spots involves 
finding locations with the right combination of thickness, TOC (total organic carbon), maturity, porosity, 
high gas-in-place and fracability (Liu, Y. (2013)). Using petrophysical well logs and geological core 
analysis (see for example the DlogR method of Passey, Q.R. et al. (1990)), these shale properties can 
be evaluated around the boreholes of drilled vertical wells. Then, traditional geostatistical methods like 
the ones in Deutsch, C.V. (2002), can be applied to interpolate the properties from a given borehole to a 
new proposed drilling site. 
 
The main drawback of such a workflow is that geological core analysis (such as in Passey, Q.R. et al. 
(1990)) is very time consuming and expensive as it entails one-at-a-time analysis of each well by a 
geological expert. Secondly, propagation of the derived properties onto new borehole locations is not 
trivial as the interpolation is not just two-dimensional along the plane but also along the depth of the 
shale play. In presence of seismic data, which possess high lateral resolution, efficient 3D-interpolation 
algorithms, such as SVM, do exist (see, for example, Liu, Y and Sacchi, M.D. (2002)). However, in 
absence of seismic data, which is often the case, the quality of such 3D interpolation decreases, in 
particular when boreholes are sparse with large distances between boreholes. The final drawback is that 
once shale properties have been derived at new locations, the geological expert will need to spend 
additional time interpreting and analyzing the results. 
 
Regression in conjunction with interpolation (Regression-Kriging) is a well-known analytical approach in 
Geostatistics (see, for example, Hengl, T. et al (2007)) that can be used to correlate well log curves with 
production data. However, this method is only applicable once the set of (one-dimensional) predictors 
and the corresponding regression model have been well defined. In the literature there is no clear 
systematic way to extract such predictors from high-dimensional and complex well log curves. Summary 
statistics such as means, maximum or minimum peak heights are obvious candidates but are too simple 
to capture all the relevant features from the well log curves. Therefore, there is a need for a systematic 
and principled framework for extracting meaningful features from well logs that correlate well with 
production data. 
 
With the numbers of available well log data in the tens of thousands or even hundreds of thousands in 
some fields, the need for an automatic, efficient, and robust method for identifying sweet spots in shale 
plays is very high. The current geological methods are too time consuming and the analytical methods 
available lack a principled framework for extracting simple yet meaningful features from complex and 
high-dimensional well log curves. The method presented in this paper aims at meeting the above need 
using state of the art statistical techniques. 
 
Our method builds predictive models for production directly using previous production data and 
petrophysical well logs alone, thus circumventing time consuming and expensive geological core 
analysis. Our method extracts simple one-dimensional features from each of the well log curves, thus 
facilitating simple 2D interpolations as opposed to more difficult 3D interpolations. This is particularly 
advantageous in situations where seismic data are not available and 3D interpolations are challenging. 
Finally, by regressing previous production data from horizontal wells on the extracted features we can 
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predict production at new locations directly. This has a clear advantage over predicting only the shale 
properties that may or may not correlate well with production and then later need to be analyzed by 
geological experts. 
 
One of the main novelties of our method is the systematic extraction of one-dimensional predictors using 
a statistically robust method called “functional Principal Components Analysis (fPCA)”. To the best of our 
knowledge this is the first time fPCA is applied to well log curves in the context of oil and gas exploration. 
 
Figure 1 illustrates the proposed workflow for identifying sweet spots in a given shale play. The shale 
play consists of several vertical wells with petrophysical well logs along with production data from 
horizontal wells. Note that the horizontal wells are not located at the same coordinates as the vertical 
wells. The analytical workflow consists of a model building phase and a prediction phase.   
 

 
 
Figure 1: On the left we see an image of a shale play with vertical wells along with horizontal wells. At each vertical well we 

have several well logs (displayed middle left, upper panel) that consist of petrophysical measurements along the depths of the 

wells. At each of the horizontal wells (displayed middle left, lower panel) we have production data available (oil and gas 

production). These data are used to build predictive models through the following three steps: 1) Functional Principal 

Component Analysis, 2) Kriging, and 3) Multiple Linear Regression.  

Production prediction can then be performed on a grid across the whole field, thus facilitating color map 

visualization of where sweet spots are located 

The three main components of the model building phase are   
  

1. Functional Principal Component Analysis: Used to extract one-dimensional features (principal 
component scores) from the petrophysical well log curves. The number K of principal components 
to be extracted can be chosen according to how much proportion of the variation in the curves is 
explained by the first K components. 

2. Kriging: Spatial interpolation of the extracted features at the vertical wells onto the (center) 
coordinates of the horizontal wells.  

3. Multiple Linear Regression: By regressing production at the horizontal wells onto the interpolated 
principal component scores we build predictive models that can be used to predict production at 
new sites.  

  
Once the model building is completed, prediction can be performed at any given location in the field. 
First, the extracted principal components from step 1 above are interpolated (using the kriging from step 
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2) onto a new location. Then the estimated regression model from step 3 is used to predict the 
production. This prediction can be performed at any individual location or on a grid across the whole 
field. The latter can be visualized with color maps that provide the user with a visual representation of 
where exactly the sweet spots are located. 
 
Functional Principal Component Analysis 
The petrophysical well log curves (in this paper: Sonic DT, log(Resistivity), log(Gamma Rays)) consist of 
discrete observations xj observed at (high resolution) discrete depths dj , j = 1,...,p, where p is the 
number of depth units observed. Since the number of depth units can be in the thousands and since the 
scatterplots (dj, xj) demonstrate smooth (non-noisy) functional relationships, these data can be 
represented as functions. This facilitates the use of Functional Data Analysis, Ramsey, J. and Silverman, 
B.W. (2005), which can be used to extract (functional) principal components from the curves. The 
functions (for a particular petrophysical property) are represented using linear expansion 

𝑥(𝑑) = ∑ 𝑐𝑘 𝜑𝑘 (𝑑)

𝐾

𝑘=1

 

where 𝜑𝑘(·) represent known basis functions (e.g., Fourier Bases, B-spline bases). The coefficients 𝑐𝑘 
are calculated as part of the preprocessing of the data. This leads to an efficient computational 
representation of the discrete data as functional objects, where the data for each well have been reduced 
from thousands of measurements to only K << p coefficients 𝑐𝑘 and known basis functions (𝜑𝑘). This can 
readily be achieved using the “fda” R-package publicly available on the R project website: http://cran.r-
project.org/.  
 
Assume now that the well logs have all been converted to functional objects 𝑥1(·),…, 𝑥𝑛(·), where n 
denotes the number of wells in the field. Functional Principal Component Analysis (fPCA) involves the 
following steps:  
 

• Find principal component weight function 𝜉1(·) for which the principal component scores 

𝜌1𝑖 = ∫ 𝜉1(𝑡)𝑥1(𝑡)𝑑𝑡  

 

  Maximize ∑ 𝜌1𝑖
2

𝑖  subject to  

 

∫ 𝜉1
2 (𝑡)𝑑𝑡 = 1 

 
• Next, compute weight function 𝜉2(·) and principal component scores maximizing ∑ 𝜌2𝑖

2
𝑖 , subject to 

∫ 𝜉2
2 (𝑡)𝑑𝑡 = 1 and additionally ∫ 𝜉1(𝑡)𝜉2(𝑡)𝑑𝑡 = 0. 

 

• Continue calculating orthogonal weight functions until desired number of principal component 
scores have been calculated 

 
The computation of functional principal component scores can be performed using the “fda” R-package. 

 
Method 
 
In Figure 2 we see a map of the shale play, demonstrating geographical coordinates of the underlying 
wells. The shale play consists of several vertical wells with petrophysical well logs along with horizontal 
wells containing production data. Note that the horizontal wells are not located at the same coordinates 
as the vertical wells. The grey and blue dots represent conventional vertical wells where petrophysical 
well log data are available. The grey dots represent vertical wells that we exclude from our analysis 
because they do not contain the desired petrophysical data, which are: Sonic DT, log(Resistivity), and 
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log(Gamma Ray). The blue dots represent vertical wells that have all these data available and are 
subsequently used in all analyses. The choice of these three particular petrophysical properties is 
inspired by the DlogR method, see e.g. Q.R. et al. (1990). The green and red dots represent the start 
and end locations, respectively, of the horizontal wells. 
 

 
Figure 2: Shale Play demonstrating geographical location [x: latitude vs. y: longitude] of (a) conventional vertical wells in grey 
(all) and blue (those that have DT, RT, and GR well log data), (b) unconventional horizontal wells in red/green. 

 
Functional Principal Component Analysis 
Let H and V denote the set of horizontal and vertical wells respectively. Let P denote the set of 
petrophysical well log properties. The well log data comprise of the petrophysical curves, 𝑓𝑖𝑗(depth), at 

vertical wells i ∈ V and petrophysical property j ∈ P.  In this paper P denotes the set {Sonic DT, 
log(Resistivity), log(Gamma Ray)}. In Figure 3 we see a plot of the observed petrophysical curves as 
functions of depth. For each of the three petrophysical properties we calculate the functional principal 
component scores (See section 2) 𝑥𝑖𝑗𝑘 , for k =1,…, 𝐾𝑗, where 𝐾𝑗 can either be chosen in advance or 

selected in such a way that the explained variance exceeds certain thresholds. Let 𝐾 = ∑ 𝐾𝑗𝑗∈P  and for 

ease of notation we omit the j subscript and write the complete set of scores (across all petrophysical 
properties) as 𝑥𝑖1,..., 𝑥𝑖𝐾. Note that the principal component scores are calculated at all vertical wells i ∈ 
V. 

 

 
Figure 3: Plot of the petrophysical well log curves as observed at the vertical wells. 

Left: Sonic DT, Middle: log(Resistivity), Right: log(Gamma Ray). 
Each color represents different wells to facilitate visualization. 

 
Kriging 
We now take the above principal component scores, as calculated at vertical wells, and perform kriging 
to obtain interpolated scores at the horizontal wells. More specifically, for each horizontal well i’∈ H and 
principal component score k we calculate the weighted average 
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𝑥𝑖 𝑘 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑑𝑖𝑠𝑡 𝑖,𝑖 ) ·𝑖 ∈ 𝑉  𝑥𝑖,𝑘 , 

 
where 𝑑𝑖𝑠𝑡 𝑖,𝑖  denotes the distance between vertical well i ∈ V and horizontal well i’ ∈ H. The kriging 

weights are obtained by specifying the covariance function parametrically (e.g. Matérn, exponential, 
spherical) and using the Maximum Likelihood criteria to estimate the corresponding parameters. 
 
Multiple Linear Regression 
Let 𝑦𝑖  denote the production (e.g. 6-month oil/gas production) at horizontal well i’∈ H. We now regress 

the interpolated principal component scores 𝑥𝑖 1, … , 𝑥𝑖 𝐾 on 𝑦𝑖  through the multiple linear regression 
model:  

𝑦𝑖  = 𝛽0 + ∑ 𝑥𝑖 𝑘 𝛽𝑘 + 𝜀𝑖 
𝐾
𝑘=1 ,  

 
where 𝜀𝑖  is independent and normally distributed with mean zero and constant variance. We fit the above 

model using Least Squares and obtain parameter estimates �̂�. 
 

Prediction  
Assume we now wish to drill a new horizontal well i0 ∈ H at a location whose spatial coordinates are 
known. We then proceed to calculate the interpolated principal component scores at i0 through 𝑥𝑖 𝑘 =
∑ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑑𝑖𝑠𝑡 𝑖,𝑖 ) ·𝑖 ∈ 𝑉  𝑥𝑖,𝑘 ,as described in the Kriging section. We then use the parameter estimates 

obtained from our Multiple Linear Regression model to form the predicted production at the new 
horizontal well: 

�̂�𝑖0
= �̂�0 + ∑ 𝑥𝑖0𝑘 �̂�𝑘

𝐾

𝑘=1

.  

Data Processing 
For our experiments we employed a dataset consisting of 2,020 vertical wells containing up to 26 
petrophysical well log properties (e.g., Calipur, Bulk Density, Deep Resistivity, Neutron Porosity, Sonic 
DT, Resistivity, Gamma Ray, etc.) within a region of 40,000 square miles. The resolution of our raw well 
log data was .50ft and for each well log we observed measurements down to a maximum depth of 
11,000ft. We also had access to another source of data containing the start and end depths of the shale 
formation of interest for each well log. Since our analysis involved only the relevant parts of the wells 
pertaining to the shale play we had to filter the well logs accordingly. The average thickness of the 
formation was approximately 250ft. We further restricted our analysis only to those wells that contained 
all of the following three indicators of carbon matter content: Sonic DT, log(Resistivity) and log(Gamma 
Rays) [see Q.R. et al. (1990)]. We see scatterplots of these three petrophysical properties as functions of 
depth (starting from beginning of shale formation) in Figure 3. 
 
Once we had pre-processed the well log data in the above manner, we next determined the functional 
representation of each curve through the basis function expansion given in (1). We used Fourier basis 
functions to represent the underlying curves and the number of basis functions was chosen to be 𝑁𝑑 – 2 

where 𝑁𝑑 represents the number of depth measurements (within the shale formation) for each curve. 
The above representation was calculated using the fda R-package. The resulting functional data was 
used in all experimental analyses. In particular, they were used to calculate the functional principal 
components as described in section 2. The production data consisted of 702 horizontal wells and we 
defined the oil/gas production at each well as the total production during the first 6 months of production. 
 

Results 
A prediction analysis was performed on a shale play consisting of 2020 vertical wells and production 
data from 702 horizontal wells. We only focused on those vertical wells that had all three desired 
petrophysical properties: Sonic DT, log(Resistivity), and log(Gamma Ray). 
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Sweet Spot Identification 
At the vertical wells we extracted for each petrophysical property the 10 first principal component scores, 
resulting in a total of 30 features. We then interpolated these 30 features onto the coordinates of the 702 
horizontal wells using (2). Finally, we regressed the 30 features on 6-month oil and gas production at the 
702 horizontal wells using (3). We used backward stepwise regression (and the AIC model selection 
criteria) to reduce the initial number of 30 features and achieve a more parsimonious model. We then fit 
the resulting linear model to obtain least squares parameter estimates. Finally, using (4) we performed 
prediction at unobserved locations (i.e. locations for potential new horizontal wells) across a grid inside 
the convex hull of our data. In Figure 4 we see color maps of these predicted oil (left) and gas (right) 
productions. These color maps can help reservoir engineers identify sweet spots, i.e. locations with high 
predicted production. 
 

 
 
Figure 4. Color maps of predicted (6-month) production at a grid of locations within the convex hull of the data.  
Left panel shows predicted oil production, Right panel shows predicted gas production. 

 
 
Cross-Validation 
In the oil and gas industry a particular well location is called a sweet spot if its production exceeds a 
given threshold. Therefore, in order to get a sense of how well our method would work in practice we 
performed a leave-one-out cross validation on the above data. As before we extracted 30 principal 
component scores and interpolated them onto the 702 horizontal well locations. For each horizontal well 
i0 ∈ H we then 1) estimated the regression model using all remaining wells, i.e. V \ { i0}, and then 2) 
predicted the production at i0 using the obtained parameter estimates. In Figure 5 we see scatterplots of 
the predicted versus observed log(production) for oil (left) and gas (right). We declare wells with 
predicted production above a given threshold “sweet spots” and then compare to actual sweet spots 
obtained by thresholding the observed production values. To assess the performance we then calculated 
the accuracy for a given “sweet-spot” threshold. To be more specific the accuracy is defined as 
(TP+TN)/(# of wells), where TP=“True Positives” represents the number of correctly specified sweet 
spots and TN=“True Negatives” represents the number of correctly specified non-“sweet spots”.  
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Figure 5. Scatterplots of predicted versus observed log(production) using leave-one-out cross validation. Left plot shows results 
for oil while the right plot shows those for gas. 

 
 
 
Figure 6 shows the Accuracy as a function of the sweet spot threshold for oil prediction (left) and gas 
prediction (right). For a sweet spot threshold of 40,000 barrels we obtained an accuracy of 0.71 for oil 
predictions and 0.9 for gas predictions. 
 

 
 

Figure 6. Accuracy as a function of sweet spot threshold for oil (left) and gas (right). 
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Conclusions 
 
In this paper we proposed a data driven and automatic method for identifying sweet spots in shale plays 
using well log data from vertical wells and production data from horizontal wells. The main contribution is 
the systematic (and fully data-driven) extraction of one-dimensional features from the complex functional 
well logs. Instead of relying on ad-hoc summary statistics, chosen manually, we use a statistically robust 
method (fPCA) that automatically extracts relevant features from the functions. We demonstrated the 
method on a real data set from a shale play consisting of 2020 vertical wells and 702 horizontal wells 
and obtained promising results in terms of accuracy. Although we only explored three petrophysical 
properties (Sonic DT, Resistivity, and Gamma Ray) in this paper, theoretically the method may be 
applied to any number and any type of petrophysical well logs provided they are smooth and functional in 
nature. 
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