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Summary 
 
Magnetic data play a significant role in oil and gas exploration, because they have the capability 
of detecting concealed geological structures, particularly faults and fractures in the sedimentary 
basins. These data, especially those acquired from the airborne platforms, could be considered 
as ‘big’ data because they are huge in volume and accumulating rapidly at fast rates. Thus, it is 
challenge to process and interpret magnetic data for faults and fractures using the traditional 
techniques. Traditional interpretation of magnetic images is rather limited due to its subjectivity 
as well as for being slow, time consuming, and tedious. In response to these challenges, a new 
method based on the deep learning is proposed in this study for the automatic detection of faults 
and fractures in the aeromagnetic data. Deep learning is a powerful artificial intelligence subset 
of machine learning in which a model learns directly from data, and it has potential to revolutionize 
the way we process and interpret our data. The deep learning technique owes its success to the 
use of powerful convolutional neural network (CNN) algorithms to perform a variety of image 
analysis tasks. This technique has already demonstrated its effectiveness in many image 
processing and interpretation applications, such as clustering, classification, pattern recognition, 
and object detection, and it is so fast and precise that in many cases surpasses the human 
capabilities. Unlike conventional neural network, which has one or two hidden layers, the deep 
learning CNN could have several hidden layers and each layer learns to detect different features 
of image, and it learns more as it advances deeper in the network. For example, the first layer is 
able to recognize object boundaries or edges, and the last layer can recognize the full object. This 
study shows results of the automatic detection and mapping of faults and fractures by applying 
deep learning technique to the publicly available aeromagnetic image over part of the Peace River 
Arch (PRA) structure in the Western Canada Sedimentary Basin (WCSB). Methodology applied 
to the magnetic image involves two deep learning approaches. In the first approach, we used a 
supervised pre-trained Berkeley Segmentation Dataset (BSDS) learning algorithm, and in the 
second approach we used unsupervised CNN learning algorithms with three layers of edge and 
line detectors. Edge detectors identify and locate abrupt discontinuities in the image pixels by 
sharp changes in color or intensity gradients, so that significant changes in the gradient 
magnitudes are identified as edges. Line detectors highlight the coherent pixel alignments of 
similar characteristics. Obtained results demonstrate high effectiveness of the deep learning 
technique in the automatic detection and mapping of faults, fractures, lithological boundaries, and 
other structural discontinuities with the use of the aeromagnetic data. We believe that its 
effectiveness will be even higher in application to magnetic data with the higher lateral and vertical 
resolutions.  
 
 



 

Introduction  
 
In recent years, deep learning convolutional neural networks (CNN) have achieved remarkable 
results in a wide range of applications, such as image clustering, classification, pattern 
recognition, and object detection. These achievements have inspired us to test CNN for the 
detection of faults and fractures in the magnetic images. Faults, fractures, and other structural 
discontinuities are shown on magnetic images as sharp changes, or high gradients, in the pixel 
color or intensity that can be detected by gradient-based edge filters. This approach, however, 
could produce inaccurate or poor results, because image color and intensity vary according to the 
image scale and orientation. In this study, we tested a new emerging technology based on the 
deep learning convolutional neural network (CNN) to detect faults and fractures in the magnetic 
images. Deep learning is a subset of machine learning. Machine learning uses statistical 
techniques to construct a model from data, whereas deep learning is capable to learn and identify 
characteristic features of the internal structure of images directly from the image data. For the 
large-volume data, machine learning techniques are less efficient than the deep learning 
techniques. This new techniques have already proved to be more accurate and much faster than 
the traditional approach in many applications, including the computer vision, medicine and remote 
sensing. These works also demonstrated that CNN is very effective in analyzing large-volume 
data and automatic detection and mapping of the identified objects.   

 
Figure 1. Alexnet architecture (modified after Krizhevsky et. al., 2012). 

 

Surge of interest in the deep learning started in 2012 following the release of AlexNet (Krizhevsky 
et. al., 2012) at the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) 
competition. At this annual competition, research scientists compete to correctly identify and 
classify images. AlexNet outperformed all competitors and won the image classification challenge 
by a large margin. AlexNet is the deep learning CNN which is trained on more than a million 
images from the ImageNet datasets. As shown on Figure 1, architecture of the AlexNet neural 
network is composed of five convolutional layers (C1 to C5) followed by two fully connected layers 
(FC6 and FC7), and a final softmax output layer (FC8), and it can classify images into 1000 object 
categories. Each convolutional layer learns to produce a more detailed image representation than 
the previous one. For example, the first layer is able to identify the major boundaries or edges, 
and the last layer represents the most detailed structure of the analyzed image (Fig. 1). Filters, or 



 

kernels, are applied to each training image at different resolutions, and the output of each 
convolved image is used as the input to the next layer. Since the release of AlexNet in 2012, 
several other popular CNN networks have been introduced, such as VGG Net, GoogLeNet and 
ResNet, and in all these networks CNN remains the center around which deep learning is built. 
 

Reduced-to-pole (RTP) magnetic grid for testing the CNN was downloaded from Canada Natural 
Resources Geoscience Data Repository website. Grid covers part of the Peace River Arch (Fig. 
2) in the Western Canada Sedimentary Basin (WCSB). Peace River Arch is a large E-NE trending 
basement structure which extends beyond the study area and runs from the northeast British 
Columbia into northwest Alberta for approximately 750 km (O’Connell, 1994). Overlying Middle 
Devonian to Upper Cretaceous sedimentary rocks have been a focus of the extensive oil and gas 
exploration since 1949. Many of the discovered oil and gas traps are fault controlled. The 
Precambrian core of the Peace River Arch consists mainly of granites that have been subjected 
to several tectonic episodes over the past 400 million years. Each tectonic episode created its 
own set of faults and fractures that eventually became components of structural traps for oil and 
gas accumulation. Main structural elements of the study area along with faults mapped by the 
vintage seismic data are plotted in Figure 2 over the input magnetic grid. 
 

 
 Figure 2. Input magnetic grid overlay part of    Figure 3. Edges detected using pre-trained Berkley 
               The Peace River Arch structure.                         Segmentation Dataset.                             

 
Methodology 
 
Initially, our goal was to test a pre-trained deep learning CNN dataset such as AlexNet (Fig. 1), 
for detection of faults and fractures on the magnetic images. However, we were unable to achieve 
this goal, because networks were not trained for detection of edges in the large-size images. To 
make these networks more suitable for edge detection, they need some tuning, especially with 
regard to the size of the input image. For example, size of the input image in AlexNet is set at 227 
by 227 pixels which is too small for our test. Instead, we decided to use the Berkeley 
Segmentation Dataset (BSDS) which is adaptable to large images and used extensively for 
detecting the boundaries and edges. This dataset has been trained on a smaller set of images: 



 

200 for training and 100 for testing (Arbelaez et al., 2011). Results of applying the trained BSDS 
to the reduced-to-pole (RTP) magnetic grid in the Peace River Arch area are shown in Figure 3. 
Using this approach, we were able to detect structural edges that are most likely related to the 
geological block boundaries within the Precambrian basement rocks.   
 

 
Figure 4. Schematic diagram of the proposed edge detectors using simple CNN setting. 
 

Encouraged by results of the BSDS application and in order to detect all kinds of structural 
discontinuities, not just boundary edges, we designed a simple yet efficient edge and line 
detection scheme with CNN being adopted as its principal part (Fig. 4). This CNN scheme is 
composed of the input layer, output layer, and three hidden layers in-between. Hidden layers 
contain three sets of the edge and line detection filters, or kernels, such as Sobel and two types 
of Gaussian derivative filters. These kernels are designed to detect edges and lines in the 
horizontal, vertical and diagonal directions, as they slide horizontally and vertically over the input 
image. At each sliding step, or stride, filter convolves with different regions of the input image, 
and if there is a match between the kernel transfer function and region characteristics, then the 
edge or line will be detected.   
                                      



 

 
Figure 5. The results of applying CNN to the RTP magnetic image of the Peace River Arch structure. 

 

Results 
 
Final results of applying the CNN with three layers of edge and line detecting filters to the RTP 
magnetic grid of the Peace River Arch are displayed on Figure 5. Figure 5a represents the 
integrated image obtained by summing-up all feature maps produced by CNN-based operations 
(Fig. 4). It reveals pronounced geological structures in the NW-SE direction and a weaker 
structures in the NE-SW direction. To highlight these geological structures further, we applied a 
skeletonization filter to the image on Figure 5a. Skeletonization resulted in additional visual 
enhancement of the NE-SW trending structures. Both displays demonstrate complexity of the 
PRA structure with continuous structural alignments of various orientations and lateral extent. 
Majority of these structures are most likely represent intra-sedimentary faults and fractures with 
roots in the Precambrian basement as well as lithological boundaries between the igneous and 
metamorphic rocks at the basement top. 
 
 

Conclusions 
 
Obtained results demonstrate successful application of the automated technique based on the 
deep learning convolutional neural network (CNN) for detection and mapping of faults, fractures, 
lithological boundaries, and other structural discontinuities in the public-domain aeromagnetic 
data. In comparison with traditional techniques, this new approach is much faster and more 
efficient. We believe that its effectiveness will be even higher in application to the data with a 
higher lateral and vertical resolution, including the high-resolution aeromagnetic data acquired 
over areas of the shale hydrocarbon exploration, where detection and mapping of the azimuthal 
orientation of faults and intensity of natural fracturing within unconventional reservoirs are among 
the primary goals. 
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