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Summary 
Finite-difference (FD) is the simulation method that is most commonly used to model seismic 
wave propagation. Indeed, this type of modelling is of key importance in many geophysical 
applications. However, in many of these schemes the region of most interest is small, whereas 
the entire model is quite large. There are methods to manipulate the source wavefield efficiently 
and reconstruct synthetical wavefields locally. However, there are few implementations in the 
elastic domain where it is specifically shown how the injection and reconstruction of wavefields 
should be done. We discuss the implementation of an efficient algorithm capable of 
reconstructing elastic wavefields, by injecting monopole sources on a surface surrounding the 
local model using finite difference methods. Our method is designed to add-on to existing 
codes, allowing any finite-difference solver to be used as a local wave-equation solver. 

Method: Injection of wavefields 
To reconstruct synthetical wavefields locally, we implement the multiple points sources (MPS) 
method within a velocity-stress formulation of the discrete wave equation (Wapenaar  2007). 
Equation 1 shows the monopole point-sources that are injected in terms of velocity-stress 
system (Virieux, 1986, equation (2)) on the boundary , 

,      (1) 

where  and  represent the point-sources injected as velocities in the first two 
equations. Notice that  and  depend on stresses recored on . The parameters 

  and   represent  the  point-sources  injected  as  stresses  in  the 
last three equations, and they are combinations of velocity components recorded  on . 
denotes the delta-function centered at scaled by the discretization interval to ensure 
correct amplitude, and  represents the number of sources equal to the number of grid points 
on . 
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Results: Numerical Examples 

We show the implementation of equations 1, where  is a transparent boundary. For this elastic 
scenario, we save five different wavefields and .   

Figure 1: Stress  snapshots of left column: the original wavefield, middle column: injection of 
the wavefield and right column: difference between left and middle snapshots. Top row: constant 
velocity model, bottom row: two layer velocity model.   

For demonstration purposes, we use a second-order FD scheme to model the response for a 
source located at  and in an elastic constant velocity model with 

,  and and a two layer velocity model with 
,   ,  and , 

. We use indices 1 and 2 in the top and bottom layer respectively. The five 
wavefields for the injection are recovered at the magenta points shown in figure (1), then the 
recorded data are injected using equation (1). Figure (1) illustrates the results of modeling with 
the local solver. After doing the difference between the original wavefield and the reconstructed 
wavefield (Figure 1, right column), we calculate an average error, which is 
for the constant model and  for the two layer model. The implementation in 
any seismic modeling tool is easy. We use Devito to implement the method (Louboutin et al. 
2017). 

Conclusions  
We have described the implementation of the MPS method in a centred staggered FD scheme 
for the elastic isotropic wave equation in the velocity-stress formulation, and its applicability in 
an elastic to elastic local solver. We show that using only one surface and five wavefields we 
are able to accurately retrieve the wavefield within a subdomain. The MPS method thus requires 
significantly less storage than alternative reconstruction methods such as the method of 
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Robertsson and Chapman (2000). Because the injection of the wavefield takes place by 
specifying point sources rather than by changing the parameters of the finite difference stencil, 
the implementation with any existing seismic modeling tool is straightforward. 
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