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Summary 

Event detection is one of the time-consuming parts in microseismic processing. Different 
automated event detection algorithms have been proposed, such as the short-time average 
over the long-time average (STA/LTA), power spectral density, and subspace detection. 
However, these approaches are not convenient for big datasets.  In this study, we introduce a 
fast matched filter (MF) algorithm, which can solve the efficiency challenge problem for these 
detectors. The proposed fast MF is built based on the fast normalized cross-correlation (NCC) 
computation technique. This method detects events in the data based on their similarity with the 
template events by comparing the NCC coefficients between the template events and the data 
with a specific user-defined threshold. The detection workflow is easy to follow with six main 
steps, namely data preconditioning, selecting template waveforms, multiplexing, fast NCC 
computation, extracting potential events, and quality control of the detection results. We have 
implemented the MF algorithm to a big microseismic dataset. The detection results obtained 
from the MF are compared with the results from the commonly used method, STA/LTA. The 
comparison shows that the MF algorithm is more efficient in event detection with fewer false 
alarms and higher detection probability within a shorter processing time than the STA/LTA, 
especially when dealing with big, noisy datasets. 

Theory / Method / Workflow 

Matched filter (MF) is a cross-correlation-based detection method. It is an effective method to 
search for a known signal (also known as a template event) in noisy data (Gibbons and Ringdal, 
2006). The MF detects events based on their similarity with template events. It uses the 
template events extracted from the data and cross-correlates them with the continuous data to 
obtain an NCC coefficient matrix, C, representing the level of similarity between the template 
events and the data. Values of C will always be in between -1 and 1. A high absolute value of C 
means a high level of waveform similarity, and a low absolute value of C indicates little similarity 
between the two waveforms (Gibbons and Ringdal, 2006). 

In this study, we build a fast MF algorithm, which is based on the fast NCC technique proposed 
by Lewis, 1995. The detection workflow includes 6 steps, namely (1) loading and filtering the 
input data, (2) extracting and selecting template events, (3) multiplexing data and templates, (4) 
fast NCC computation between template events and the continuous data using their multiplexed 
formats, (5) extracting the potential events when the NCC values exceed a trigger threshold, 
and (6) quality control (QC) of the detection results. In this workflow, we faster the detection 
process by using the STA/LTA algorithm with the recursive formula proposed by Withers et al., 
1998 to extract the template events. The STA, LTA are then calculated as  

𝑆𝑇𝐴𝑖 =  𝐶1𝑥𝑖 + (1 − 𝐶1)𝑆𝑇𝐴𝑖−1  (1) 
𝐿𝑇𝐴𝑖 =  𝐶2𝑥𝑖 + (1 − 𝐶2)𝐿𝑇𝐴𝑖−1  (2) 

in which 𝐶1 = 1/𝑤𝑠 and 𝐶2 = 1/𝑤𝑙; 𝑤𝑠, 𝑤𝑙 are the short and long-time window lengths; 𝑥𝑖 is the 
time series with the time index 𝑖. The recursive STA/LTA helps to avoid keeping long data 
vectors in the memory and reduce the computation time effectively (Withers et al., 1998). Then, 
the multiplexing technique is applied to turn the 3C data/templates into single continuous data 
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streams, so we only need to calculate the cross-correlation function on a single data stream and 
can reduce the complexity of the computation. Next, the fast NCC technique is applied to obtain 
the NCC coefficient matrix. The NCC coefficient between the template event 𝑇 and the data 𝑓(𝑡) 
is given as  

𝐶(𝑢) =
∑ [𝑓(𝑡) −  𝑓�̅�][𝑇(𝑡 − 𝑢) − �̅�]𝑡

√∑ [𝑓(𝑡) − 𝑓𝑢]2 ∑ [𝑇(𝑡 − 𝑢) − �̅�]2
𝑡𝑡

 (3) 

where 𝐶(𝑢) is the NCC coefficient at each point 𝑢, 𝑇 is the template event, �̅� is the mean of the 
template, 𝑓𝑢 is the mean of 𝑓(𝑡) in the region under the template. In Lewis’s technique
expressions in equation (3) can be efficiently computed with very few operations so we can 
speed up the detection process. After that, potential events are triggered and extracted when 
the NCC coefficient is higher than a user-defined threshold. Finally, quality control of the 
detection results is performed to remove undesirable events. This step is usually done by 
manual inspection and classification.  

Results, Observations, Conclusions 

To assess the detection performance of the proposed fast MF, we have implemented this 
algorithm on a big microseismic dataset (about 1.2 TB) and compared the detection results with 
the results obtained from the commonly used method, STA/LTA. The data are microseismicity 
emitted from 78 hydraulic fracturing (HF) treatment stages in 4 HF wells and are continuously 
recorded by sensors in both vertical and horizontal monitoring arrays. Figure 1 below shows the 
map view of the location of the treatment and monitoring wells. We run the STA/LTA with an 
STA window length being three times the dominant period of the event, an LTA window length 
being five times longer than the STA window, a trigger threshold of 2, and at least half number 
of receivers must observe the events. The proposed fast MF is implemented with a threshold of 
0.2, and at least half of the number of receivers must see the events. Figures 2 and 3 below 
show the detection results obtained from both methods for each treatment stage. As we can see 
from these figures, the number of events obtained from the proposed MF and the STA/LTA in 
each HF stage is almost the same. After manual inspection and classification, we obtain a total 
of 21766 excellent events (those having both clear P- and S- phases) from the STA/LTA and a 
total of 19913 excellent events from the proposed fast MF. Thus, the proposed MF algorithm 
can detect almost the same number of events as the STA/LTA. However, this method requires 
less time for the detection process than the STA/LTA. The STA/LTA method is an incoherent 
energy detector which detects events without knowing information on the signals to be detected; 
thus, noise such as tube waves, electrical noise, and random noise can be incorrectly 
considered as potential events (those are false alarms/false triggers). With a threshold of 2, the 
STA/LTA helps to capture almost the number of true events (those having clear P- and/or S-
phases) in the data; however, it has lots of false alarms in the detection results. Due to these 
false alarms, classifying the detection results in the STA/LTA method is time-consuming. In 
contrast, the proposed MF detects events based on their similarity with the template events. 
With the threshold of 0.2, the MF can detect almost the same number of excellent events while 
having fewer false triggers, which save time in the classification step. Furthermore, the 
combination of the recursive STA/LTA, multiplexing, and fast NCC computation techniques in 
the workflow fasters the detection performance of the proposed MF.  

In summary, the proposed fast MF algorithm can work well with big microseismic datasets. The 
algorithm speeds up the detection process by applying the recursive STA/LTA combined with 
multiplexing and the fast NCC techniques. The workflow is easy to follow with a more superior 
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detection performance (less false triggers and high detection probability) than the commonly 
used method, STA/LTA. To perform the fast MF efficiently, we recommend using this algorithm 
for data generated from repetitive sources. If there is high variability in the waveforms, the MF 
can slow down the processing process as more templates need to be considered. The detection 
threshold can vary depending on the quality of the data. However, it should satisfy a trade-off 
between true events, false alarms, and missed events. 

Figure 1 - Map view of the location of the HF treatment and monitoring wells. 
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Figure 2 - The detection results of (a) Well 1, (b) Well 2, (c) Well 3, and (d) Well 4, recorded by 

the vertical monitoring array, obtained from the STA/LTA and the fast MF methods. 

Figure 3 - The detection results of (a) Well 1, (b) Well 2, recorded by the horizontal monitoring array, obtained from 

the STA/LTA and the fast MF methods. 
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