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Summary 
Hydraulic fracturing (HF) is an essential technology for the development of low-permeability, 
unconventional hydrocarbon resources (King, 2010). During a HF treatment injection parameters 
such as pressure, injection rate, and proppant concentration, are continuously monitored and 
properly time-sampled to assure the effectiveness of the fracture plan. To optimize the reservoir 
engineering of the stimulation, microseismic monitoring has become an important tool used to 
infer key aspects of the complexity and geometry of hydraulic fractures. Linking the injection 
monitoring data with the microseismic event pattern allows for the understanding of specific 
fracture expressions corresponding to clear-cut injection characteristics that can be optimized to 
improve well performance. This study introduces a machine learning workflow to predict the radial 
distance of the microseismic events from the injection source. We apply a set of regression 
algorithms to a dataset from an open-hole well stimulation near Rimbey Alberta to illustrate the 
methodology.  

Theory 
Microseismicity during hydraulic fracturing 
Hydraulic fracturing, a technique that involves the pumping of high-pressure fluids and proppant 
to fracture the rock, has become one of the main methods used in unconventional hydrocarbon 
reservoirs to enhance permeability and increase the volume of stimulated rock. This process 
provides information about the fracture growth and proppant placement but fails on predicting 
details of the fracture dimensions and complexity. To optimize the fracturing treatment, and map 
the fracture geometry, microseismic monitoring has been widely used in recent years (Warpinski, 
2013). During hydraulic fracturing, the location of the shear slippages relative to the injection 
source can be used to approximate fracture dimensions. Microseismic mapping provides an 
estimate of the fracture azimuth, height, length, and complexity. These are important parameters 
used by engineers to optimize the completion strategy and increase production rate (Cipolla 2012, 
Fisher 2004).  
To understand the spatial and temporal evolution of induced microseismic clouds due to the 
tensile opening and propagation of a hydraulic fracture, a model of material balance for an 
incompressible treatment fluid like water is commonly used. The volume of fluid injected during 
hydraulic fracturing is the sum of the volume lost through leak-off and the volume used to create 
the fracture. This mass conservation equation is defined as (Economides, 2000) 

where  is the total injection rate and  is the pumping time of the treatment. The terms   and
  refer to the volume leaked to the formation and the fracture volume respectively. Their values 

depend on the geometry of the fracture's cross-section. For a PKN fracture model (Perkins et al., 
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1961), and using Carter’s (1957) model of fluid loss, the fracture half-length as a function of time 
is given by 

Where  is the fracture half-length (assuming a symmetrical bi-wing hydraulic fracture),  is the 
height of the fracture,      is the width, and      is the fluid-loss coefficient. Equation (2) remains 
valid in the case of a propagating hydraulic fracture. However, in situations when the bottom hole 
pressure created by the injection of fluid is smaller than the absolute value of the minimum 
principal compressive stress (e.g. during the subsequent times after reaching the instantaneous 
shut-in pressure), microseismicity is mainly controlled by a linear process of relaxation of stress 
and pore pressure at the injection source (Shapiro, 2015). Thus, in the absence of any dominant 
hydraulic fracture, equation (2) can be replaced by the triggering front equation (Shapiro et al., 
2002). 
where  is the hydraulic diffusivity. To sum up, equations (2) and (3) serve as an approximation 
of the fracture dimensions as a function of injection time during a HF treatment. 

Machine learning 
Machine learning is an automated process that extracts patterns from data and uses the 
experience to improve performance (Mohri et al., 2018). In supervised learning, the model 
receives a set of labeled data (i.e. training set) and then makes predictions on unseen data (i.e. 
testing set). In this paper we use an ensemble of supervised learning, regression algorithms, to 
link the injection monitoring curves and the microseismicity for the prediction of the radial distance 
of microseismic events. The purpose of regression is to predict as closely as possible the real-
value label of the point considered. The performance of the prediction depends on the magnitude 
of the difference between the real and predicted value (residuals), usually defined by an error 
function. Thus, a good regression model is quantified by the combination of weights that produce 
the minimum error.  
The main advantage of using ensemble learning is a reduction of variance and bias that allows 
the model to make more accurate predictions in the test set (Zhou, 2012). In this work we use 2 
regression algorithms to build the ensemble regressor. The  Random Forest (RF) regression 
consists of a large number of randomly sampled regression trees built by the recursive partition 
of a random sample with replacement (i.e. a bootstrap sample) known as the root node, into 
subgroups called nodes, and down to the terminal nodes. In this process, each partition is done 
based on specified splitting parameters and the final prediction, once reaching a stopping 
criterion, is the average value of the appropriate terminal node (Breiman, 2001). In the end, the 
overall prediction of the RF is the average of predictions from all trees. Additionally, we utilize the 
Ridge Regression (RR) algorithm, also known as linear least square’s regression with l2 
regularization. The RR minimizes the following objective function (Hoerl et al., 2000). 

where  is a vector that contains the regression coefficients,  is a matrix made from the 
independent variable,  is a vector containing elements of the dependent variable,  is the identity 
matrix, and  is the penalty coefficient that determines how much regularization is applied. 
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Data and method 
We employ data from a six-stage hydraulic fracture operation done in the Rock Creek Formation 
at the West Pembina field in Alberta, Canada. The last stage of the treatment is analyzed, 
comprising 2800 seconds of continuous injection monitoring data and a catalog of 615 
microseismic events recorded simultaneously with the stage treatment. First, we calculate the 
radial distance from the hypocenter of the microseismic events to the port of stage 6. We define 
the input parameters for the ML model from the injection monitoring curves. For this work, we use 
the time-series data of treating pressure, injection rate, and proppant concentration. To evaluate 
the performance of the model, we split the whole dataset into training and test sets. We select the 
first 2000 seconds of data as the training set and use the remaining 800 seconds of the data to 
validate our model.  
To create a model that captures the dynamic behavior of the hydraulic fracture, we derive 
statistical features using moving time windows with 94% overlap applied to the input time-series 
data. For a window size of 10 minutes, we extract 33 statistical features (11 per input time-series). 
We calculate features like mean, standard deviation, kurtosis, and quantiles. These are common 
statistical measures used in time-series analysis to understand the central tendency and 
variability of the data. We then label each training example  as the maximum radial distance of 
the microseismic events within the time window , calculated from the time-series data of the 
maximum event distance per minute. The machine learning dataset  is as follows 

where  is the total number of training examples. Figure 1 shows the radial distance of the 
microseismic events in the spatial domain, the input time-series used to extract the statistical 
features, and the radius vs time ( ) plot of the microseismic events in the training set. To train 
the model, we first standarized the training and test sets by removing the mean and scaling to 
unit variance. Then, we used the ridge regression and random forest regression algorithms from 
Pedregosa et al., (2011) to create the ensemble learning model. To avoid overfitting, we use k-
fold Cross Validation to split our training dataset into k=5 number of subsets, called folds. We 
then fit the model 5 times, each time training the data on 4 of the folds and evaluating on the 
remaining fold, the validation set. We quantify the accuracy of the prediction using the mean 
absolute error (MAE) regression loss evaluated on the validation set. 

Results 
We train the random forest and ridge regression models on the training set and obtain an average 
MAE over the 5 folds of 2.79 and 2.89 respectively. Then, we ensembled the models using a 
weighted average and assigned a weighting factor of 0.1 for the RF model and 0.9 for ridge 
regression. Figure 2 shows the labels and predicted radial distance of the microseismic events 
from each regression model and the ensemble in the test set. While the RF model was not able 
to predict the increase in radial distance at the end of the stage, the RR model did a pretty good 
job with a slight overestimation of the radial distance. Finally, the ensemble model achieves a 
MAE = 3.13 in data that it has never seen during training. The accuracy is remarkable considering 
that our model does not use past or future information to make a prediction and is based solely 
on statistical features extracted from the input features on the rolling time windows. 

Conclusions 



GeoConvention 2020 4 

We introduced a new method to predict the radial distance of the microseismic events in the 
upcoming minutes of a HF operation using machine learning. For that, we use an ensemble 
regression model on real hydraulic fracturing and microseismic monitoring data recorded at the 
West Pembina Field in Alberta, Canada. The results prove that, at least for a single stage, our ML 
approach can predict with high accuracy the evolution of the radial distance of microseismicity 
over time using only statistical features extracted from the injection monitoring curves. Our 
analysis corroborates the importance of integrating the injection history with microseismic 
mapping to create a better approximation of fracture dimensions. To conclude, we determined 
that a careful setup of the input parameters allows the ML model to correlate the distance of the 
microseismic events to the injection monitoring data.   
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Figure 1: (a) Microseismic events colored by radial distance from the injection point of stage 6. 
(b) Radius vs time  plot of the events on the training set. The blue curve shows the target 
label. (c) Injection monitoring curves showing the training and test sets. (d) average moment 
magnitude per minute and maximum radial distance of events per minute.  

Figure 2: (a)  Test labels (blue curve) and predictions on the test set. The green curve shows 
the RF prediction, red curve is the RR prediction, and the yellow curve is the ensemble result. 
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