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Summary 

The determination of in-situ stresses is important in Enhanced Geothermal System (EGS) 
energy development. Large-scale stress changes take place during EGS, affecting rock mass 
permeability, expecially in naturally fractured rock masses, and potentially even triggering felt 
microseismic activity. Good predictive modeling is vital for decisions on project viability and 
environmental impact, therefore good stress data are vital. Hydraulic Fracturing (HF) is a widely 
accepted technique for in-situ stress determination, but is time-consuming and expensive 
because of rig time involved in lowering the tools to take measurements. In contrast, taking 
advantage of the shape of borehole breakouts measured from widely-available caliper and 
image logs to estimate in-situ stress in deep hot rocks is more economical, requires no extra rig 
time, and is thus an attractive alternative. Four-arm caliper data and image logs are standard 
borehole geophysical logs, and more sophisticated logs may be used if more data are required 
(such as in a research borehole or the first several boreholes in a multi-well EGS program). 

By finite element modeling of borehole breakouts considering thermoporoelasticity, the authors 
simulate the process of borehole breakouts in terms of initiation, development, and stabilization 
under Mogi-Coulomb criterion and end up with the shape of borehole breakouts. Artificial neural 
network provides such a tool to establish the relationship between in situ stress and shape of 
borehole breakouts, which can be used to determine in situ stress based on different shape of 
borehole breakouts by inverse analysis. In this paper, two steps are taken to determine in situ 
stress by inverse analysis. First, sets of finite element modeling provide sets of data on in situ 
stress and borehole breakout measures considering the influence of drilling fluid temperature 
and pore pressure, which will be used to train an artificial neural network that can eventually 
represent the relationship between the in situ stress and borehole breakout measures. Second, 
for a given measure of borehole breakouts in a certain drilling fluid temperature, the trained 
artificial neural network will be used to predict the corresponding in situ stress. Results of 
numerical experiments show that the inverse analysis based on finite element modeling of 
borehole breakouts and artificial neural network is a promising method to determine in situ 
stress. 

Theory / Method / Workflow 

Rock Failure Criterion 
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The Mogi–Coulomb criterion is used to analyze wellbore stability with the effect of intermediate 
principal stress on rock strength considered. 
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where 𝜎 , 𝜎 , 𝜎  are effective principal stresses, 𝑐  is the cohesive strength, 𝜑  is the internal 
friction angle.  

Simulation of Thermoporoelastic Borehole Breakouts by the Finite Element Method 

Borehole breakouts occur as a series of successive spalls in the direction of the local minimum 
principal stress that result from shear failure subparallel to the free surface of the borehole wall. 

Fig.1 shows the schematic of a typical borehole breakout process, where (1), (2), (n)represent 
the failure regions of each cyclic process, respectively; 1, 2, n represent the surface of a 
breakout of each cyclic process, respectively. 

Fig.1. Schematic of a borehole breakout process 

Finite Element Implementation 

For the compressible fluid flowing through the saturated non-isothermal deformable porous 
medium, in the form of displacements, pressure and temperature as unknowns, the governing 
equations can be described as follows. 

𝐺𝛻 𝒖 𝐺 𝜆 𝛻𝑑𝑖𝑣𝒖 1 𝛻𝒑 𝐾𝛽 𝛻𝑻 𝒇 0 (2)
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The Galerkin finite element method is used to approximate these governing equations. The final 
form of the FEM solution to the thermoporoelastic equations is as follows: 
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To integrate the above equations with respect to time (𝜃 method), the equation becomes: 
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Inverse Analysis by Artificial Neural Network  

An ANN includes an input layer, a hidden layer and an output layer. A schematic of a three-layer 
neural network model and a single artificial neuron is shown in Fig.2. 

(A)
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(B) 
Fig.3.  (A) Schematic diagram of ANN and (B) a single artificial neuron 

For a single artificial neuron, 𝑌  can be expressed as 
𝑌 𝑓 ∑ 𝑤 𝑋 𝜃        7  

Results, Observations, Conclusions 

Numerical experiments of finite element modeling of borehole breakouts show the contrasting 
tendency of breakouts shape with different in-situ stress conditions. It was also found that the 
depth of breakouts increases until a stable state is reached, but the width of breakouts remains 
unchanged in the process of borehole breakouts. For different temperatures of the drilling fluid 
with respect to the rock mass, the higher the drilling fluid temperature, the more severe borehole 
breakouts will be.  

Numerical experiments show that inverse analysis by ANN based on thermoporoelastic 
borehole breakout modeling is a promising method to determine in-situ stress. In the numerical 
experiments in this study, the finite element models produce the simulated breakouts. However, 
anisotropy and plastic behavior are not considered in this work, thus its application to more 
brittle rock such as those encountered in EGS situations is more likely to lead to useful stress 
estimates. Furthermore, additional constraints (e.g. good measurements of σh) will aid in the 
generation if better ANN results. 

Novel/Additive Information  

Taking advantage of the shape of borehole breakouts measured from widely-available caliper 
and image logs to estimate in-situ stress in deep hot rocks is more economical, requires no 
extra rig time, and is thus an attractive alternative. Four-arm caliper data and image logs are 
standard borehole geophysical logs, and more sophisticated logs may be used if more data are 
required (such as in a research borehole or the first several boreholes in a multi-well EGS 
program). 
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