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Summary 

The initial foundation for achieving goals in integrated reservoir studies is a sound conceptual 
geological model which includes deposition, stratigraphy and structure. A key impact on 
reservoir studies is a rigorous strategy around facies for modeling. Decisions on facies, how to 
define them and how to model them are an important factor in creating reservoir models that are 
useful. The modeled facies provide local geological features, patterns and properties. Facies 
are derived from many sources with varied concepts, definitions, scales and purposes. 
Classically, facies are a visual interpretation of the face of a rock driven by geological concepts. 
The interpretation of facies from outcrops is made in terms of depositional processes, by their 
genetic relationships, thus leading to a depositional environment interpretation. Subsequently, 
we derive an understanding of stratigraphy, the depositional architecture and stacking patterns. 
In petroleum reservoirs, we commonly use these surface observations of ancient analogues 
compared to modern settings, in addition to sparse and imprecise subsurface information to 
determine facies logs. Is this adequate? The under used application of electrofacies modeling 
provides a robust and encompassing framework of methods to bring consistency to facies logs 
thus enhancing the integration of multi-scale data for reservoir modeling.  

The current industry best practice for modeling reservoir heterogeneities related to flow is to 
apply a hierarchical workflow of simulation of facies first, followed by property simulations within 
each modeled facies. Model facies are a categorical variable used for hard conditioning in 
geomodels. For modeling purposes, the input facies categories each represent consistent 
statistical properties, stationary domains, across a study area. Fluid distributions as well as flow 
and mechanical properties are dependent on the characterization by each facies. Accounting for 
known physical behavior, percolation and capillarity, when distributing properties by facies 
facilitates reasonable physical responses in flow models. 

Methods and Workflow 

The classification of lithofacies involves various approaches. There are visual methods such as 
combining rock fabric, pore space and petrophysics (e.g. Lucia, F. J., 1995) and these may 
include detailed description of depositional and diagenetic processes from core or image data. 
Petrofacies classification involves defining rules-based petrophysical categories, e.g. using log 
cutoffs or cross-plot polygons. Electrofacies classification typically applies multivariate statistics 
using wireline logs and visual core or image description. The advantage of electrofacies is 
combining both the important geological classifications with the petrophysical data.  
Visually interpreted facies must be checked for petrophysical consistency, i.e. the distinctness of 
petrophysical distributions, which is not guaranteed. Application of electrofacies, multivariate 
classification can improve consistency and is beneficial for the hierarchy of modeling workflows 
(Martinius et al. 2017). The result is to enforce the lithological characteristics based on distinct 
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rock properties measured and to be distributed in models at the log curve scale. (Garner et al., 
2014; Manchuk et al., 2015). A brief discussion of five assumptions underlying a basic linear 
discriminant analysis application (Davis, 1986) provides practical guidance on checking, 
cleaning and improving useful facies inputs whether the facies are used directly for modeling or 
as a part of the training set (visual facies and well logs) for other numerical classification 
methods. These five assumptions are all violated to some degree by the training sets.  

Discriminant analysis described by Davis, 1986, although useful to understand, is a parametric 
method applicable to simply organized data distributions and clusters, and is not optimal for 
typically complex geological facies log data distributions. When using visual facies and well logs 
as the training sets for electrofacies classifications, non-parametric methods (Nivlet, et al., 2002; 
Ye and Rabillier, 2000) tend to be most effective given the varied sizes and shapes of the facies 
in the “hyper-space”, the multivariate distributions.   

Electrofacies modeling workflow steps are not widely established in the industry practice or 
promoted by the software vendors. There is a lack of best practice guidance and training. 
Misuse or sub-optimal application and lack of widespread dissemination of software to G&G 
staff beyond petrophysicists holds back the technology. Treating the electrofacies practice as an 
interpretive one, a guided machine learning process, is part of successfully obtaining results.  

To emphasize the workflow, thorough training set preparation is imperative for electrofacies 
methods to succeed. The visual facies may be considered to be at a different scale or resolution 
than well logs, are prone to slight errors, and have overlapping distributions. Cleaning involves 
inspecting and trimming input facies based on the outlier tails of the distributions for each log 
parameter. Paradoxically, cleaning the training set entails interpretive judgement and alters the 
statistical measures used to check the results, e.g. increasing the percentage of correctly 
assigned facies and changing initial facies proportions. However, once deemed cleaned, 
different model parameter options may be consistently compared. If enough wells are available 
with core facies, withholding some for blind tests and for model validation can be beneficial. The 
final electrofacies logs will be judged not only by correct assignment rates, reasonable 
proportions, but for consistency with the geological concepts. Assignment errors tend to be a 
reclassification to an adjacent quality facies, feasibly aiding consistency for future heterogeneity 
modeling. Thus the process is guided and not statistically unbiased. Examples from a few fields 
will be shown along with aspects of the workflows. The industry practices around preparing 
facies logs for modeling are diverse and can benefit from the controlled application of 
electrofacies classification and the associated thought processes.  
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