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Summary

We developed an inversion scheme based on robust singular spectrum analysis (SSA) that is capa-
ble of simultaneously removing blending and erratic ambient noise. We propose an iterative scheme
that adopts the projected gradient method to solve the source separation and denoising problem.
The robust SSA acts as the projection operator to suppress blending noise and erratic noise in the
frequency-space ( f − x) domain. We reformulate the singular spectrum analysis filter as a convex
optimization problem constraining the low-rank Hankel matrix, which is written as the product of two
matrices of lower dimension obtained by bifactored gradient descent (BFGD) method. We evaluate
the robust SSA projection operator in deblending and erratic noise removal of a synthetic data ex-
ample and compare it with the classic (non-robust) SSA method. The results support that the robust
one does have a competitive performance for seismic data processing applications.

Introduction

Due to its economic advantages, simultaneous source acquisition has drawn the attention of many
practitioners and researchers (Beasley et al., 1998; Howe et al., 2008; Beasley, 2008; Kim et al.,
2009). Compared with the conventional seismic acquisition, which adopts a single source, simulta-
neous source acquisition uses more than two sources and fires them simultaneously with a random
time delay (Beasley et al., 1998). One of the major problems associated with this acquisition is that
the same receiver records the interferences generated by the other sources. Due to the random
time delays, the interferences are incoherent in some domains, such as common receiver gathers
(Berkhout, 2008). This characteristic further leads to a variety of separation algorithms.

One way for separating simultaneous sources data is to adopt a denoising method to suppress blend-
ing noise in common receiver gathers directly (Beasley, 2008; Kim et al., 2009). The denoising
methods mainly rely on the incoherency of the blending noise and aim at separating the coherent
unblended data by filtering out the incoherent blending noise in such a domain (Berkhout, 2008).

Another way to separate simultaneous sources is by posing the deblending as an inverse problem
in which one minimizes a cost function that includes a data misfit term and a regularization term
(Akerberg et al., 2008; Moore et al., 2008). Usually, for the inversion method, the data are transformed
into an auxiliary domain, and one can minimize the cost function to make sure that the separated data
can reproduce the blended data with a small acceptable error (Abma et al., 2010; Mahdad et al., 2011;
Li et al., 2013; Cheng and Sacchi, 2015, 2016). Compared with denoising methods, deblending via
inversion methods usually leads to better separation results (Moore, 2010; van Borselen et al., 2012).

In this paper, we borrowed ideas from Cheng and Sacchi (2013) and expanded them into simultane-
ous deblending and erratic ambient removal by adopting robust SSA instead of traditional SSA as a
projection operator. In each iteration, we selected robust SSA to suppress erratic and blending noise
simultaneously. The synthetic results support that adopting robust SSA as a projection operator does
have a competitive performance compared with adopting the non-robust one.
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Theory

Deblending and erratic noise removal via projection operators

In order to suppress blending noise and erratic noise, an iterative inversion scheme can be proposed
to preserve data fidelity in order to honor the blending acquisition. In this case, the deblending
problem can be summarized by the following cost function

minimize J1 = ‖b−BD‖2
2 +µ ‖D ‖2

2 (1)

where b represents the blended data, B the blending operator, D is the desired data cube that one
would have acquired via a conventional seismic survey, and µ is the trade-off parameter. The matrix
Di represents the i-th receiver slice of data cube D (i.e., a common receiver gather).

A common choice to minimize equation 1 in deblending applications is the projected gradient method
(Bertsekas, 1999; Cheng and Sacchi, 2015; Lin and Sacchi, 2020). At each iteration, the solutions
are updated in the gradient descent direction and projected to a given set that has desired features.
In summary, the projected gradient iterations are given as

Z =Dk−λ

[
B∗
(
BDk−b

)
+µDk

]
, (2)

Dk+1
i =Ps[Zi]. (3)

where Ps represents the projection operator.

In this paper, the robust SSA (Bahia and Sacchi, 2019) is used as a projection operator Ps due to
its capabilities of eliminating erratic and blending noise while preserving the signal for each common
receiver gather. Without losing generality, in equation 3, Zi denotes the i-th receiver slice of data
cube Z. After computing Di, i = 1 . . .nr for all receiver gathers, we synthesize all Di to form a new
data cube D.

Robust singular spectrum analysis

We start by representing the classic (non-robust) SSA (Oropeza and Sacchi, 2011) operator by

S {·}= A {R {A ∗{·},k}} , (4)

where A ∗ {·} denotes Hankelization operator, R {·,k} represents rank-reduction operator usually
done via the Singular Value Decomposition (SVD), k is the desired rank, and A {·} is the anti-diagonal
averaging operator. One should notice that the input data for equation 4 are the frequency slices of a
given seismic dataset. Further, since the SVD is a least-squares solution (Eckart and Young, 1936),
the SSA filter is not resistant to outliers and its performance severely deteriorates in the presence of
erratic observations (Chen and Sacchi, 2014; Bahia and Sacchi, 2019).

Alternatively, one can reformulate the SSA filter as a convex optimization problem such as

minimize
Ĥ

f (Ĥ) =
∥∥S−A

{
Ĥ
}∥∥

p , s.t.
{

rank
(
Ĥ
)
≤ k
}
, (5)

where S represents the frequency slice of the observed seismic data, Ĥ is the desired low-rank Hankel
matrix, and ‖ · ‖p denotes a robust norm of choice.
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Again, minimization of equation 5 can be achieved via first-order methods, where the minimizing
direction is obtained through the gradient of the cost function

∇ f (Ĥ) =−A ∗{W(S−A {Ĥ)}
}

(6)

where W is a diagonal matrix of weights. Adopting Tukey’s bisquare function (Trickett et al., 2012;
Chen and Sacchi, 2014; Bahia and Sacchi, 2019) the elements of W for the robust SSA filter can be
calculated by

Wi j =


[

1−
(
|ri j|
β

)2
]2

, |ri j| ≤ β

0, |ri j|> β

(7)

and r= (S−A {Ĥ(n)})
σ

is the normalized residuals by a scale parameter σ , and β is user-defined tunable
parameter. Together with σ , β define a threshold to down-weight the large residuals of the outliers,
thus reducing its influence in the final output. For non-robust SSA filter, W can be set as an identity
matrix.

The scale parameter σ can be obtained by the normalized median absolute deviation (MAD) (Chen
et al., 2014; Bahia and Sacchi, 2019)

σ = 1.4826MAD

with MAD = median(|r−median(|r|)|).

The low-rank constraint in equation 5 can be achieved by factoring the Hankel matrix Ĥ as the product
of two matrices of lower dimensions

minimize
Û,V̂

f
(
ÛV̂H)= ∥∥∥S−A

{
(ÛV̂H)

(n)
}∥∥∥

p
. (8)

Because of the bilinearity of this problem, such factorization leads to nonconvexity in the cost function,
and an alternating strategy has to be used in its minimization. Having the gradient of equation 8 with
respect to U and V as given by (Park et al., 2018)

∇U f
(
UVH)= ∇ f (Ĥ)V, ∇V f

(
UVH)= ∇ f (Ĥ)HU, (9)

one can use the bifactored gradient descent (BFGD) algorithm (Park et al., 2018) to iteratively update
the factors (U,V) following a conventional gradient descent strategy

Ui+1 = Ui−η∇U f
(
UiVH

i
)
, Vi+1 = Vi−η∇V f

(
UiVH

i
)
. (10)

Combining equations 6, 9 and 10, we can achieve the robust SSA filter.

Examples

We synthesize an example containing four linear plane-wave events to mimic a common receiver
gather in the conventional seismic acquisition. The numerical example consists of 40 receivers and
40 shots. The source wavelet was synthesized with a Ricker wavelet of central frequency 30 Hz. The
erratic ambient and random noise are added into each common receiver gather before numerically
blended the seismic data.

We first synthesize the data only containing the random noise and blending noise (Figure 1) to com-
pare the deblending and denoising results by robust SSA projection operator and non-robust one.
Figure 1a shows the noisy data. Figures 1b and 1d show the denoising and deblending results with
robust SSA projection operator and non-robust SSA projection operator, respectively, and Figures 1c
and 1e are corresponding error sections.
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Figure 1: Comparison of denoising and deblending by robust SSA and non-robust SSA projection
operator methods. (a) Noisy data, (b) result by robust SSA, (c) difference between (b) and (a), (d)
result by non-robust SSA, (e) difference between (d) and (a).

We can observe that the deblending results are quite similar and both methods work well for blending
noise and random noise attenuation, although the robust SSA could preserve more signal. Figure 3a
shows the SNR variation versus iteration number of the projected gradient method. In Figure 3a, we
can observe that adopting robust SSA as a projection operator can achieve higher SNR values than
the classic SSA.

The next example is to test the denoising and deblending effect when adding erratic noise (Figure 2).
Figure 2a is the noisy data containing random noise, blending noise and erratic noise. The deblending
and denoising results can be observed in Figures 2b and 2d. Figures 2c and 2e are corresponding
error estimation section.
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Figure 2: Comparison of denoising and deblending by robust SSA and non-robust SSA projection
operator methods by adding erratic ambient noise. a) Noisy data, (b) result by robust SSA, (c)
difference between (b) and (a), (d) result by non-robust SSA, (e) difference between (d) and (a).
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Comparing Figures 2b and 2d, we notice that the robust SSA projection operator could obtain better
deblending and denoising results. The erratic ambient noise are well attenuated, while for the non-
robust one we still can observe erratic noise left in the error estimation section (Figure 2e). The SNR
variation versus iteration number (Figure 3b) further verifies that adopting the robust SSA as the
projection operator could outperform its non-robust counterpart. For the non-robust SSA projection
operator, because of characteristic of SSA method, the large singular values of erratic noise are kept,
which cause erratic noise left in the deblending and denoising result profile (Figure 2d). This is also
the reason why the SNR value decreases according to iteration number (Figure 3b).
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Figure 3: a) SNR vs. iteration number when containing random noise and blending noise. b) SNR
vs. iteration number when containing random noise, blending noise and erratic ambient noise.

Conclusion

This paper illustrates an iterative rank reduction algorithm based on robust singular spectrum analysis
for simultaneous deblending and erratic noise removal. When existing erratic noise, the classic SSA
filter method is not suitable for denoising. Adopting the robust SSA as a projection operator can
successfully suppress blending noise an erratic ambient noise. Synthetic examples show that the
classic SSA projection operator will keep the largest singular values of erratic noise, which causes
erratic noise cannot be attenuated well. The robust SSA projection operator can overcome this
problem.
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