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Summary 

Interpretation of geologic features and inference of reservoir properties are key to the success of 
hydrocarbon exploration and production. In seismic interpretation, accurate delineation of 
subsurface structures is a necessary and routine process. Automation of this task allows for timely 
delivery of interpretation products to support prospect identification, well planning, reservoir 
modeling, and geohazard analysis. One such application is the seismic interpretation task for 
facies classification. One of the obstacles to the application of deep learning to seismic 
interpretation is the absence of publicly available, annotated large datasets for the training and 
testing of supervised models.  

This study has two main objectives. The first objective is to solve the fundamental perception 
problem given an array of sensor data (i.e., two-way-travel time-series data), and we design an 
algorithm to discretely label and segment the subsurface structures. The second objective is to 
apply the concept of deep domain adaptation (DDA) to bridge the gap between source and target 
domains in a joint space. This would allow for a supervised classifier trained on labeled source 
data to perform well in the segmentation task on the target domain.  

Theory / Method / Workflow 

We use two different 3D geological dataset based on an open-source, fully annotated 3D 
geological model of the Netherlands F3 Block. We also use seismic data based on offshore North 
and Northwest Region of Australia to test deep domain adaptation (DDA). In this study, we 
compare our methods of semantic segmentation to the two baseline models developed in Alaudah 
et al. (2019).  
The two models used in the current study, SeismicNet and DeepLab v3, are state-of-the-art 
models in semantic image classification. SeismicNet is an encoder-decoder architecture inspired 
by both U-Net (Olaf et al., 2015) and the more recent Danet-FCN3 (Civitarese et al., 2019). The 

encoder is composed of 5 ResNet convolution blocks, each has 2 convolution layers. At each 
block downsampling is performed through strided convolution with a scale of 2. The decoder has 
5 transposed residual blocks similar to Civitarese et al., (2019), each is comprised of 2 
deconvolution layers where upscaling is done through transposed convolution with a scale of 2 at 
each block. Each convolution layer is followed by a batch normalization layer (Sergey and 
Szegedy, 2015) and PReLU (He et al., 2015) is used as the activation unit. We feed a small patch 
of 99 x 99 due to memory constraints and to get larger receptive fields. The decoder provides us 
64 features maps with a spatial resolution of 99 x 99 which are then projected to a segmentation 
map of 6 by a 1 x 1 convolution.  
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DeepLab v3 employs atrous convolution with upsampled filters to extract dense feature maps and 

to capture long range context. It is used to encode multi-scale information. DeepLab v3 increases 
effective field-of-views. Atrous convolution, allows to repurpose ImageNet pretrained networks to 
extract denser feature maps by removing the downsampling operations from the last few layers 
and upsampling the corresponding filter kernels, equivalent to inserting holes (‘trous’ in French) 
between filter weights (Chen et al., 2017). DeepLab v3 also handles  the existence of objects at 
multiple scales, using the  strategies: Image pyramid, encoder-decoder structure, extra modules 
cascaded on top of the original network and spatial pyramid pooling.  

Results, Observations, Conclusions 

To evaluate the performance of different models on our two test sets, we use the following metrics: 
(a) pixel accuracy (PA), the percentage of pixels over all classes that are correctly classified; (b)
class accuracy for class i (CAi), the percentage of pixels that are correctly classified in a class i;
(c) mean class accuracy (MCA), the average of CA over all classes, and (d) frequency-weighted
intersection over union (FWIU), to prevent this metric from being oversensitive to small classes
and hence weight each class by its size.

The SeismicNet models have outperformed the baseline models in most of the facies groups 
(Upper North Sea, Lower North Sea, Rijnland, Scuff). In smaller classes like Scuff, SeismiNet 
models have displayed some fair improvements. However, the Freq Weighted IoU score remains 
the same for baseline and SeismicNet1 models (Table 2). Overall, with hyperparameter tuning, 
we expect the SeismicNet models to significantly outperform the baseline models, as they are 
able to incorporate more spatial and contextual information. 

Facies Group Baseline SeismicNet1 

Upper North Sea 0.926 0.940 

Middle North Sea 0.912 0.896 

Lower North Sea 
0.974 0.980 

Rijnland 0.673 0.780 

Scuff 0.286 0.383 

Zechstein 0.458 0.424 

Table 1: Results of SeismicNet models compared to two section-based baseline models of 
Alaudah et al. (2019) . 
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Facies Group Baseline SeismicNet1 

Mean class accuracy 0.705 0.736 

Freq Weighted IoU 0.736 0.734 

Mean IoU 0.736 0.791 

Pixel Accuracy 0.862 0.881 

Table 2: Metrics of SeismicNet models compared to two section-based baseline models of 
Alaudah et al. (2019). 

Novel / Additive Information 

The novelty of this approach is to integrate domain adaptation, a sub-discipline of machine 
learning that deals with scenarios in which a model is trained on a source distribution, into the 
context of a different but related target distribution. In general, domain adaptation uses labeled 
data in one or more source domains to solve new tasks in a target domain. The level of relevance 
between the source and target domains hereby usually determines how successful the adaptation 
will be. In this case, a deep learning model is trained to identify facies in F3 block of the 
Netherlands North Sea and deep domain transfer will be applied for dataset in NW Shelf Australia. 
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Figure 1: The results of SeismicNet on inline 499 based on patch model. The color map is shown 
in Table 1. 


