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Summary

This article explores a recently proposed method for optimizing sensor placement that we adapted
for optimal shot gather reconstruction. The method uses Proper Orthogonal Decomposition (POD)
to extract bases from a training dataset. Dimensionally reduction methods such as singular value
decomposition, and QR pivoting are used to determine optimal receiver geometry. The technique of
least-squares is used to reconstruct the shot from the POD bases.

Introduction

In applications where either deploying sensors are costly, or constraints limit a dense coverage, the
design of optimal sensor placement can reduce the overall acquisition cost. However, determining
optimal sensor locations is an NP-hard problem. Instead of trying a brute-force search among all the
combinatorial possibilities formed by the positions of the sensors, we test a new sensor placement
design method recently proposed by Manohar et al. (2018).

Machine learning techniques usually take advantage of the dominant features which are exhibited
in a dataset with similar patterns for classification or other purposes. These features can often be
identified using dimensionality reduction techniques, for instance, via Proper Orthogonal Decomposi-
tion (POD). In this paper, optimized receiver locations for seismic data acquisition and reconstruction
are designed based on a tailored set of features extracted from either synthetic or real seismic data.
These bases are extracted via the POD method. The optimal receiver locations are computed using
QR pivoting and singular value decomposition (SVD) methods. Shot gathers can then be recon-
structed with minimal distortion via a least-squares inversion that uses training data.

Theory

In general, natural signals are highly compressible. That is to say, when the signal is transformed
into another appropriate domain, an economical representation in terms of a few basis functions is
attainable, and missing data could be received from a small number of measurements. Rather than
acquiring the full measurements in the first stage, the theory of compressed sensing states that it may
be possible to collect a compressed version of the data directly and then estimate the coefficients that
model the data via sparse inversion.

Compressed sensing strategies are ideal for the recovery of unknown compressible signals from
random measurements on a universal basis (Baraniuk, 2007). However, if the information is available
about the signal, it is possible to design bases that are particularly tailored for a given signal (Manohar
et al., 2018) and, therefore, find a representation that can be used for signal recovery.

Proper orthogonal decomposition (POD) is a data-driven dimensionality reduction technique, which
expresses x ∈ Rn as linear combinations of several orthonormal eigenmodes Ψ. On a tailored basis
Ψr ∈ Rn×r, the data x may have a low-rank representation
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x = Ψra, (1)

where a∈Rr. The eigenmodes Ψr and POD coefficients a can be obtained via the SVD. This low-rank
embedding requires data for training. Given a data matrix X = [x1 x2 . . .xm], the resulting eigenmodes
are the orthonormal left singular vectors Ψ of X obtained via the SVD

X = ΨΣVT ≈ΨrΣrVT
r . (2)

The matrix Ψr and Vr contains the first r columns of Ψ and V, and the diagonal matrix Σr contains the
first r× r block of Σ. For low-rank datasets, the singular values have a fast decay. In this paper, the
optimal hard threshold algorithm based on the singular value distribution and aspect ratio of the data
matrix is used for choosing the target rank r (Gavish and Donoho, 2013).

The measurement or sampling matrix C ∈ Rp×n is constructed in the following way

C =
[
eγ1 eγ2 . . .eγ p

]T
, (3)

where e j represents the basis vector with a unit entry at index j and zeros elsewhere. Then, the
measurement y consists of p elements selected from x

y = Cx =
[
xγ1 xγ2 . . .xγ p

]T
, (4)

where the index set of γ = [γ1 . . .γp] denotes sensor location. Combining equation 1 and equation 4
yields the optimal sensing problem

y = CΨra = Θa. (5)

When x is unknown, the reconstruction can be obtained using (Manohar et al., 2018)

x̂ = Ψrâ, where â =

{
Θ
−1y = (CΨr)

−1y, p = r,
Θ

†y = (CΨr)
†y, p > r

. (6)

The sensor placement design finds rows of Ψr, which corresponds to the sensor locations that opti-
mally condition the inversion of the sensing matrix Θ. Following (Manohar et al., 2018), we adopted
the QR factorization with column pivoting to decompose the matrix Ψr

Ψ
T
r CT = QR, (7)

where Q is a unitary matrix, R is an upper-triangular matrix, and C represents a column permutation
matrix. The algorithm of QR column pivoting increments the volume of the submatrix by enforcing a
diagonal dominance structure. Therefore, it optimally conditions the measurement or row-selected
POD bases and yields the r point sensors that best sample the r basis modes Ψr.
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Figure 1: 2D velocity model.

Example

For the synthetic data, we generate 2D shot gathers by finite-difference modeling using the SeisAcous-
tic package from SeismicJulia (Stanton and Sacchi, 2016). The velocity model of the Marmousi model
(Figure 1) is relatively flat on the left side but becomes complicated in the right side. Both the shots
and receivers are placed at the surface of the model, and there are in total 160 receivers and 120
shots.

In this example, the first 60 shot gathers are incorporated into the training dataset, and the shot
number 61 is the testing gather, which is not included in the training dataset. The data are low rank,
and Figure 2 illustrates the decay of the singular values. In Figure 2, the blue dots represent the
modes that are used in the reconstruction stage by applying the optimal hard threshold method for
singular values.

In this case, the minimal number of sensors used is 24. Figure 3a) is the original shot gather for shot
number 61. The difference between random sensors and optimal sensors are compared. The ran-
domly selected data adopted the jittered sampling strategy proposed by Hennenfent and Herrmann
(2008) to control the maximum gap size. Figure 3b) is the randomly sampled data with 24 receivers,
and Figure 3c) is the corresponding reconstruction. On the other hand, Figure 3d) is the optimal
sampled data with 24 optimal sensors, and Figure 3e) is the reconstructed result based on optimal
sampling. It is noticeable that the optimal sampled reconstruction almost recovered all the essential
features of the original dataset. In contrast, the randomly sampled reconstruction result is worse than
the optimal result. Further, the optimal sensor locations are prone to be the place where the data is
more complex.

A real marine seismic dataset from the Gulf of Mexico is also used to test the method. The data are
composed of 180 receivers and 267 shots. The first 100 shots are the training dataset. The shot
number 101, the testing shot gather, is shown in Figure 4a). As in the synthetic example, the 34
random sampled traces are shown in Figure 4b), and the reconstructed result in Figure 4c). While
Figure 4d) is the optimal sensing case where we used 34 sensors. Figure 4e) is the recovered shot
gather based on the optimal sampled data.

Conclusion

In this study, we adopted a technique proposed by Manohar et al. (2018) to optimal receiver design
for seismic acquisition. We apply the method to both synthetic and real seismic datasets. Instead
of using random measurements, sensor positions can be selected by this method. However, the
drawback of the method is that it requires properly sampled shots to extract the natural bases of the
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Figure 2: Singular values and four selected POD modes. The optimal rank truncation threshold
occurs at r = 24.
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Figure 3: Comparison between the original shot gather and the reconstructed shot gather for ran-
domly and optimally decimated data. a) The original shot gather. b) Randomly decimated data. c)
Reconstruction from randomly decimated data. d) Optimally decimated data. e) Reconstruction from
optimally decimated data.
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Figure 4: Comparison between original shot gather and reconstructed shot gather from randomly and
optimally decimated data. a) The original shot gather. b) Randomly decimated data c) Reconstruc-
tion from randomly decimated data. d) Optimally decimated data. e) Reconstruction from optimally
decimated data.

problem via POD. The results are promising. However, it is not clear to us how one can use this
method to design practical algorithms for realistic seismic data reconstruction scenarios.
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