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Summary 

A CNN-based residual dense network (RDNet) is utilized to interpolate missing seismic traces 
within 2D synthetic seismic data. The contiguous memory mechanism, residual learning and 
feature fusion in both local and global levels enable RDNet to interpolate regularly missing 
traces with relatively high recovered S/N and accommodate spatial aliasing. In cases of 
randomly missing traces, RDNet produces comparable though slightly degraded results relative 
to the conventional minimum weighted norm inversion. Reliable results are obtained with less 
missing data, e.g., recovered signal-to-noise ratio (S/N) of ~ 40 dB and 30 dB for 10% and 30% 
randomly missing traces, respectively. As the missing-trace percentage increases, errors accrue 
in regions of the data with big gaps (typically larger than five consecutive traces). We expect this 
will be improved by including more training data, which is currently being examined. 

Introduction 

Investigations of interpolation methods have been documented in a number of previous studies, 
which mainly differ in complexity, assumptions, operator size, and the mathematical/numerical 
engine used (Trad, 2009). Generally, these interpolation techniques can be classified into four 
categories: prediction filter-based approach (Spitz, 1991; Naghizadeh and Sacchi, 2007), wave-
equation based approach (Ronen, 1987), mathematical transform-based approach (Chen et al., 
2014; Gan et al., 2015; Ibrahim et al., 2018) and rank-reduction-based approach (Oropeza and 
Sacchi, 2011; Ma, 2013; Kreimer et al., 2013).  

Recently, as a subset of artificial intelligence, machine learning (ML) has grown rapidly in 
popularity and effectiveness, as the result of improvements in the computational capacity of 
computers and rapid developments within the big data revolution. At present a big push is 
underway to formulate and examine algorithms for processing, inversion, and interpretation of 
seismic data which take advantage of the optimizations and “learning” capacities of AI and ML. 
Not only are we motivated by the possibility of extending the accuracy and reach of existing 
algorithms by doing so, but also by the fact that properly-formulated ML processing fits 
straightforwardly and naturally into new and future computing architectures and hardware 
technology. Thus, even a reproduction of an existing seismic processing approach within the 
context of ML represents an important step. Researchers have attempted to formulate 
interpolation within the ML environment in recent years.  

In this work, we will apply the residual dense network (RDNet), a convolutional neural network 
normally used for the image super-resolution problem, to the interpolation of missing seismic 
traces. Using the synthetic seismic data and RDNet, we will then investigate the application to 
the cases with regularly and randomly missing traces and compare with results obtained using 
an existing conventional interpolation algorithm and the other convolutional neural network 
(CNN)-based approach (i.e. minimum weighted norm inversion (MWNI) and ResNet). 
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Method 

The residual dense network (RDNet) was originally designed for image super-resolution (Zhang 
et al., 2018), which can make full use of hierarchical features from original low-resolution 
images. Here, we take the seismic interpolation as an image super-resolution problem and will 
adopt a similar RDNet as the study of Zhang et al. (2018) for seismic interpolation. Figure 1 
shows the architecture of the RDNet, in which the input is seismic data with missing traces, and 
output is the data after interpolation. The outputs of a preceding block and each layer within the 
current block connect to all the subsequent layers directly through the so-called contiguous 
memory mechanism. In addition, there is a concatenation operation at the end of each residual 
dense block, which is designed for adaptively fusing the states of preceding blocks and all the 
layers in the current block. Furthermore, the local residual learning is also included in each 
block for further improving the representation ability of the neural network. As shown in Figure 1, 
the feature fusion and residual learning are also designed in a global way, and this feature 
fusion can extract global features by fusing the states from all the residual dense blocks. For the 
sake of comparison, interpolations are also implemented with a previously proposed residual 
network (ResNet) (Wang et al., 2019) and a minimum weighted norm inversion (MWNI) (Liu and 
Sacchi, 2004). 

Figure 1 The architecture of the RDNet used in this study (modified from Zhang et al., 2018). 

Dataset and RDNet Training 

To test the effectiveness of RDNet on seismic interpolation, we use 2D synthetic seismic data 
generated by finite differences from the velocity model in Figure 2, which contains flat, dipping, 
curved layer interfaces, and two salt bodies with higher velocities compared with surrounding 
medium. Altogether, 146 shot gathers are generated, and each has 513 surface receivers. In 
the network training, 80% of shot records are used for training and 20% for validation. To further 
test the flexibility of the trained RDNet on other datasets, we also generated shot gathers from 
other two velocity models, one of which is a layered velocity model, and the other has two thin 
embedded layers.  

The RDNet is trained with Keras using the synthetic dataset. The loss function is defined as the 
mean squared error (MSE) between the interpolated and labeled data. In the neural network 
training, the evaluation metric is defined as the recovered signal to noise ratio (S/N) in dB, and 
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the Adaptive momentum algorithm (Adam) (Kingma and Ba, 2014) is used to update and search 
the optimal parameters. In the training stage, the maximum training step number is set to be 
150, and the initial learning rate is set as 1E-4 after testing a series of values. The learning rate 
decreases with training step, and its value is reduced by 5% after each epoch. We also adopt 
an early stopping scheme in the training stage, i.e., the training will stop if there is no 
improvement in the S/N of validation set after 10 consecutive epochs. Similar to the procedure 
adopted in the ResNet training (Wang et al., 2019), we break each seismic shot gather into 
small patches for training with 50% overlap between two adjacent patches in both spatial and 
temporal directions. Due to the limited GPU memory, we use the mini-batch to update 
parameters in each iteration. 

Figure 2 Velocity model used to generate the training and validation data. 

Results 

Table 1 Average recovered S/N (in dB) using three interpolation methods based on the 
synthetic data. 

Interpolation Methods 
Regularly Missing Cases Randomly Missing Cases 

1/2 of the original 
trace spacing 

1/3 of the original 
trace spacing 

10% missing 
traces 

30% missing 
traces 

50% missing 
traces 

MWNI 

Train Set 33.7 15.0 47.2 33.9 25.0 

Validation Set 33.8 14.6 47.3 33.7 25.2 

Test Set 32.0 13.2 42.7 34.4 21.7 

ResNet 

Train Set 36.5 27.9 N/A N/A N/A 

Validation Set 36.5 28.1 N/A N/A N/A 

Test Set 35.1 25.8 N/A N/A N/A 

RDNet 

Train Set 45.4 37.3 41.5 31.9 22.5 

Validation Set 45.2 37.2 40.9 30.2 21.7 

Test Set 42.5 31.4 41.1 31.7 22.7 

Interpolation results for both regularly and randomly missing cases are summarized in Table 1. 
It can be noticed that RDNet outperforms the other two approaches in the case of regularly 
missing cases, and the reconstruction errors from MWNI are the largest among the three 
especially for the case with spatial aliasing. A series of synthetic experiments demonstrates that 
both RDNet and ResNet can handle the aliasing problem effectively (Figure 3). In the cases of 
randomly missing traces, we observe that the recovered S/Ns using RDNet are close to or 
slightly lower than those obtained using MWNI. In addition, with the missing percentage 
exceeding 30%, reconstruction errors for some certain shots mainly exhibit in areas where there 
are relatively large trace gaps (typically > 5 consecutive traces) (Figure 4). Theoretically, the 
number of combinations for selecting 30% or 50% out of 512 traces is much larger than that for 
selecting 10%, however, training data sizes for these three cases are the same, which may 
result in the insufficient training samples for these scenarios. 
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Figure 3 Interpolation results for test shot # 1 for the case of interpolating two traces between 
every two adjacent traces. S/Ns for the reconstructed shot gather using the three methods are 
10.9, 27.7 and 35.2 dB, respectively. 

Figure 4 Interpolation results for validation shot # 2 using MWNI (2nd row) and RDNet (3rd row) 
for the case of 30% missing traces. S/Ns for the reconstructed shot gather using these two 
methods are 32.7 and 18.1 dB, respectively. 
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Conclusions 

A series of synthetic experiments indicate that RDNet could reconstruct the missing seismic 
traces with relatively higher recovered S/N for regularly missing cases compared with MWNI 
and ResNet. Its effectiveness in handling the spatial aliasing effects has also been 
demonstrated. In terms of the randomly missing cases, RDNet could achieve interpolation 
results with recovered S/N close to or slightly lower than conventional MWNI. When the training 
dataset is insufficient (missing traces exceed 30%), reconstruction errors using RDNet for some 
certain shots mainly exhibit in areas with large trace gaps (typically > 5 consecutive traces). 
This issue is expected to be solved in future work by including more data during the training 
phase. 
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