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Summary

Simultaneous source acquisition is a strategy to save acquisition costs and enhance data density. In a
nutshell, seismic sources are fired at random times with overlap to save acquisition time and increase
source density. Data acquired during this process contains strong source interferences, usually de-
scribed as blending noise. Deblending (removal of source interferences) is a major challenge for
simultaneous source data processing. In this paper, we propose a deblending method based on a
local Radon transform and a modified Matching Pursuit algorithm. We propose a robust Matching
Pursuit algorithm to retrieve Radon domain coefficients that synthesize deblended data. Our de-
blending tests show a significant signal-to-noise ratio improvement when one adopts the proposed
robust Matching Pursuit algorithm.

Introduction

Simultaneous source separation methods are generally divided into two categories: inversion based
methods and denoising based methods. The method proposed in this paper belongs to the denoising
category. In a common shot gather, both the desired signal and source interferences are coherent.
However, in common receiver, common offset, or common midpoint domains, only the desired signals
are coherent. In these domains, source interferences behave like random outliers (Beasley, 2008;
Berkhout, 2008). We propose to remove source interferences via a robust Matching Pursuit algorithm
that operates with Radon transform bases. The method extracts the Radon domain coefficients that
synthesize the signal. Once all common-receiver gathers are denoised, we organize them back into
common shot gathers to yield the final deblended volume.

Moore et al. (2016) proposed a deblending method based on a greedy algorithm that applies the
concept of trimmed inner products introduced by Chen et al. (2013). These contributions do not
explain how one can use trimmed inner products for implicit operators such as the time-domain
Radon operator. In this article, we propose a Robust Matching Pursuit algorithm to solve for Radon
coefficients that synthesize coherence signals in the common-receiver gathers. Rather than using
trimmed inner products, we suggest using Lp space inner products that are also insensitive to erratic
blending noise. Moreover, we provide a detailed explanation of how one can add Lp space inner
products into the Matching Pursuit solver for operators given in an implicit form.

Theory

In the Matching Pursuit algorithm, we choose the best-fit basis waveform based on the maximum
absolute inner product between test waveforms that belong to a dictionary and data residuals in each
iteration. However, the conventional inner product, which is calculated in the L2 space, is sensitive
to the outliers. Therefore, when the data has erratic blending noise, the conventional inner product
would result in the selection of the wrong basis waveform. Authors have addressed the problem above
via a modified greedy pursuit approach (Razavi et al., 2012) that incorporated a Huber loss function
(Huber et al., 1981). Similarly, Zeng et al. (2016) introduced a correlation between two vectors in
Lp space. These authors divided the problem into three cases with 0 < p < 1, p = 1, and 1 < p < 2,
and used three different methods to calculate robust inner products. However, their method can be
computationally expensive to implement. Recently, Chen et al. (2013) used the trimmed inner product
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by sorting the dot product of two vectors based on the absolute value of its elements and computing
the sum after removing the largest values. This concept, which is analogous to the truncated mean
often used in robust statistics, can reduce the effect of the outliers and help to identify the correct
waveform function. In this paper, we propose a new method to calculate a robust inner product, which
we called the Lp inner product. The algorithm is easy to implement in a Lp space with 0 < p < 2.

Let us consider the problem of minimizing the following cost

J = ‖d−αg‖2
2 (1)

where d and g are two vectors and α is a scalar. The cost function attains its minimum for ∇J = 0
which yields α = (d,g)2 = dT g/gT g. Evidently, if we disregard the normalization, the latter is the inner
product between the vector d and g in the L2 space. Similarly, we can find the scalar parameter α

that minimizes the following Lp cost function (0 < p < 2)

J = ‖d−αg‖p
p . (2)

We can make an analogy to the L2 case, and say that the Lp inner product is the scalar that minimizes
equation 2 which is given by

α = (d,g)p =
∑i giwidi

∑i giwigi
(3)

where wi = (|di−αgi|p−2 + ε)−1. Equation 3 can be solved by iteratively reweighed least squares
(IRLS; Scales and Gersztenkorn, 1988). For p = 1, 3-5 iterations can produce a good estimation of
α and 8-10 iterations are sufficient for the case of 0 < p < 1.

Now we would like to apply the new inner product to the computation of the Radon transform. Unfor-
tunately, the time domain Radon transform is applied "on the flight" and one does not have access
to explicit Radon basis functions in vector form. For instance, let us consider the discrete Radon
transform in time domain. The forward operator is denoted by L and its adjoint by L∗

L : d(t,h) =∑
q

m(τ = t−qh,q) (4)

L∗ : m̃(τ,q) =∑
h

d(t = τ +qh,h) (5)

where h is offset, q is ray paramter, t is time and τ is intercept. The adjoint Radon sum L∗ can be
interpreted as the inner product of the data with an all-ones vector. Hence, one can define the robust
Radon operator as one were the sum is computed via an expression equivalent to equation 3 with
g = 1 and data across extracted each tau− q− h trajectory. In other words, if we define the vector
u(τ,q) = [d(τ +qh1,h1),d(τ +qh2,h2),d(τ +qh3,h3) . . . ]

T , then the robust Radon adjoint operator L∗r is
given by

L∗r : m̃(τ,q) = (u(τ,q),1)p . (6)

In this case, the Matching Pursuit algorithm will become insensitive to outliers and, therefore, less
prone to the selection of the incorrect basis function. Algorithm 1 provides the proposed Robust MP
algorithm for the Radon transform. Notice that the coefficient needed to fit individual waveforms to
residuals is also computed via a robust p-norm fitting.

Example

We adopt a subset of a marine seismic dataset from the Gulf of Mexico composed of 808 shots
and 183 receivers. The receivers are evenly distributed with an interval of 87 m. We blend three
consecutive sources and then used pseudo-blending to obtain blended shots and blended common-
receiver gathers. In this example, we apply deblending in common channel gather domain, and then
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Algorithm 1 Robust Matching Pursuit Radon transform
Input: data d
Output: reconstructed data dr

Initialization r0 = d, dr = 0 and k = 0
while k ≤ Kmax do

for all τ,q do Robust adjoint
u(τ,q) = [r(τ +qh1,h1),r(τ +qh2,h2),r(τ + r h3,h3) . . . ]

T

m(τ,q) = (u(τ,q),1)p

end for
(τ∗,q∗) = argmaxτ,q |m(τ,q)| Extract largest coefficient
g = Lδ (τ∗,q∗) Synthesize basis function via the forward Radon
α∗ = argminα ‖r−αg‖p

p Estimate amplitude
r = r−α∗g Update residuals
dr = dr +α∗g Update reconstructed data
k = k+1

end while
sort back to the common shot gather to show the final results. We use a local linear Radon transform
with a window size of ten traces.

Figure 1 shows one common offset gather and its pseudo-blended gather. Figure 1c and 1e show the
deblending results from the non-robust and robust matching pursuit. For the robust matching pursuit
result, the SNR improves from -0.72 dB to 9.1 dB, and the total gain is 9.82 dB.

As we mentioned before, we apply deblending to all collective offset gathers and then sort them
back to the common shot gathers. Figure 2 is one of the common shot gathers and its associated
pseudo-blended record. The pseudo-blended data contains source interference from two neighbor-
ing sources, and the SNR equals to -2.85 dB. As shown in Figure 2e, the robust MP upgrades the
deblending quality in terms of SNR, which increases from -2.85 dB to 9.2 dB. The quality enhance-
ment can also be observed by inspecting one single trace (Figure 3), where the robust deblending
removes almost all source interference and recovers all significant events simultaneously.

Conclusion

We proposed a method to estimate the Radon transform via a robust matching pursuit algorithm. The
robust Matching Pursuit Radon transform was adopted to attenuate erratic noise caused by source
inferences arising in simultaneous source acquisition. The definition of the adjoint Radon operator in
terms of a robust Lp sum permits to minimize errors in the selection of basis functions in the matching
pursuit algorithm.
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Figure 1: Deblending results in the common offset gather for real marine data. (a) Original data. (b)
Pseudo-blended data with SNR=-0.72. (c) Non-robust deblending result with SNR=2.2. (d) Errors
between (a) and (c). (e) Robust deblending result with SNR=9.1. (f) Difference between (a) and (f).
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Figure 2: Deblending results in the common shot gather for real marine data. (a) Original data. (b)
Pseudo-blended data with SNR=-2.85. (c) Non-robust deblending result with SNR=0.9. (d) Errors
between (a) and (c). (e) Robust deblending result with SNR=9.2. (f) Diffeence between (a) and (f).
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Figure 3: Example of one trace from each data: original (a), pseudo-blended (b), deblended with
robust matching pursuit (c), deblended without using robust matching pursuit (d)
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