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Summary
In Northeastern (NE) China, there are more than 80 porphyry Mo deposits, making it the largest

Mo ore region in China. However, the major factors controlling the large-scale porphyry Mo

mineralization in this region are still unclear, and whether there is any inherent Mo enrichment of

the source region and/or any pre-degassing magma processes leading to high-Mo melts

remains enigmatic. Daheishan is one of the typical porphyry Mo deposits in the Lesser Xing'an-

Zhangguangcai Range, NE China, and the magmatic features and ore-forming processes

remain obscure, which presents an excellent opportunity to study the possible factors controlling

the Mo endowment. In this contribution, we present a detailed study of mineralogy, whole rock

and mineral compositions, and isotopes from the Daheishan Mo deposit, followed by

discussions on petrogenesis of the causative intrusions, characteristics of ore-forming magma,

and ore precipitation mechanisms. The results from this study would give a clear constraint for

the Mo mineralization in Daheishan deposit and provide better insight into understanding the

ore-forming mechanisms for other porphyry Mo deposits in this region and worldwide.

Introduction
NE China has become the largest Mo ore region in China (total Mo>11.4 Mt) due to abundant

new discoveries, over the last decade, of large to giant Mo-only or Mo-dominated polymetallic

deposits. Most of these Mo deposits in northeastern China are porphyry type with generally

Mesozoic ages (Ouyang et al., 2013; Shu et al., 2019), such as Chalukou (2.46 Mt Mo; Duan et

al., 2018), Caosiyao (1.79 Mt Mo; Wu et al., 2017), Daheishan (1.09 Mt Mo; Zhou et al., 2014),

Luming (0.89 Mt Mo; Chen and Zhang, 2018), and Huojihe (0.28 Mt Mo; Xing et al., 2020).

Many studies have been carried out on these Mo deposits, mainly concentrating on their
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geologic characteristics, geochronology, whole rock geochemistry, and isotopic signature, as

well as studies of ore-forming fluids and regional metallogenic setting (Zeng et al., 2014; Han et

al., 2014; Chen et al., 2017; Gao et al., 2018, and references therein); however, to date only a

few papers have focused on the characteristics of the ore-related parental magmas and the key

controls on the Mo mineralization in this region (Ouyang et al., 2020; Xing et al., 2020). Although

the direct and intuitive understanding of the physicochemical features of the initial mineralization

related magmas is melt inclusions (e.g., Lerchbaumer and Audétat, 2013; Mercer et al., 2015;

Audétat and Li, 2017; Zhang and Audétat, 2017a, b; Ouyang et al., 2020), accessory minerals

(e.g., apatite, titanite, and zircon) in ore-related intrusions can also provide indirect evidence on

the nature of the ore-forming magmas; this is due to the extremely sparse melt inclusions in

these porphyry Mo deposits in NE China.

Apatites and titanites are important accessory minerals in granitic rocks, both of which are

major carriers of various key trace elements (i.e., halogens, S, As, Fe, Mn, Ga, Sr, and REEs)

(Nagasawa, 1970; Henerson, 1980; Nakada, 1991). They are relatively resistant to alteration

and weathering and therefore preserve their original geochemical signatures even after weak

hydrothermal alteration (Belousova et al., 2002a, b; Selvig et al., 2005; Cook et al., 2016).

Hence, magmatic apatite and titanite record and preserve important geological information of

their equilibrium parental magmas (cf. Watson, 1980; Tiepolo et al., 2002; Piccoli and Candela,

2002; Mathez and Webster, 2005; Pan et al., 2016, 2018; Azadbakht et al., 2018; Xing et al.,

2020). For example, the Ga content, Ce and Eu anomalies of titanite and apatite have been

widely used to evaluate the oxidation state of magma (e.g., Cao et al., 2012; King et al., 2013;

Chelle-Michou et al., 2014; Pan et al., 2016, 2018), halogen and sulfur compositions in

magmatic apatite have been applied to estimate volatile compositions in melt (cf. Coulson et al.,

2001; Pan and Fleet, 2002; Chelle-Michou et al., 2017; Richards et al., 2017), the

concentrations of Sn, W, and Mo in titanite are important indicators for evaluating magma

fertility for these metals (cf. Pan et al., 2018), and the Sr/Y, La/Yb, and Dy/Yb ratios are utilized

to indicate the magmatic water contents (e.g., Lu et al., 2016; Nathwani et al., 2020).

Furthermore, apatite and titanite Nd isotopic compositions can shed light on the magma source

(Gregory et al., 2009; Zeng et al., 2016).

Samples and Methods
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Twelve granitic samples in this study were collected from the surface outcrops of the Daheishan

deposit in order to perform whole-rock compositional, minerals (apatite, titanite) geochemical,

and in situ Nd isotopic analyses. Six fresh granitic samples, including four of Qiancuoluo granite

porphyry (166.6 Ma) and two of Qiancuoluo biotite granodiorite (169.9 Ma), were selected for

whole rock major and trace element composition analyses. Samples used for major and trace

elements analyses of the apatite and titanite were selected from these twelve fresh granitic

rocks expect one granite porphyry with weak potassic alteration and one with weak sericite

alteration.

Results and Conclusions
Whole rock geochemical data show that the causative plutons in Daheishan deposit share

homogeneous compositions, and both are characterized by peraluminous high silica, alkali rich

compositions, belonging to high-K calc-alkaline, I-type granites with adakitic affinities. Magmatic

apatite and titanite from the intrusions show similar εNd(t) values from -1.1 to 1.4, corresponding

to a restricted range of TDM2 ages from 842 to 1039 Ma. Combining with the tectonic setting, the

Nd isotopic compositions reflect the ore-forming intrusions have a relatively uniform magma

source, indicative of formation from parental magmas dominantly derived from melting of the

juvenile lower crust with minor depleted mantle materials.

The low Ce and high Eu contents in magmatic apatite and titanite suggest that the

mineralization-related magmas has a high oxygen fugacity. These results are also supported by

the high Fe2O3/FeO (>1) ratios of the whole rock, as well as the low Ga concentrations in apatite

(9–52 ppm), but high Ga concentration in titanite (36–122 ppm). The high Sr/Y ratios of whole

rock, relatively high δEu/Y, La/Yb, and low Dy/Yb ratios of apatite, titanite, and zircon in

Daheishan are interpreted to reflect the high magmatic water contents. Using two published

partition coefficients for S between apatite and oxidized silicate melt, we estimated the absolute

S concentration in pre-degassing melt was 15–88 ppm, which display no systematic difference

with the subeconomic and barren occurrences. Based on the mass balance constraints on

estimated S, a minimum volume of 33–193 km3 magma are required to form the Daheishan

deposit. In addition, a rough estimate of magmatic Mo concentrations via magma chamber size

and Mo inventory in Daheishan show an apparent Mo-poor character of the mineralized

magmas (2–13 ppm), which is consistent with the low Mo contents in titanite (11–53 ppm).

Comparing many other porphyry Mo/Mo-Cu, subeconomic, and barren systems, we conclude
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that a large volume of magma (at least several tens to hundreds of km3) with high oxygen

fugacity and water contents are more likely the key controls on Mo endowment, while the pre-

degassing enrichments of Mo and S in parental magma are not essential prerequisites for

formation of the Daheishan Mo deposit. The findings in this study can apply to evaluate whether

a magmatic system has the potential to form Mo mineralization.
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