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Summary 
Full waveform inversion (FWI) has become a major seismic imaging technique. However, using 
the least-squares norm in the misfit functional possibly leads to cycle-skipping issue and 
increases the nonlinearity of the optimization problem. Several works of applying optimal 
transport distances to mitigate this problem have been proposed recently. The optimal transport 
distance is to compare two positive measures with equal mass. To overcome the mass equality 
limit, we introduce an unbalanced optimal transport (UOT) distance with Kullback–Leibler 
divergence to balance the mass difference. An entropy regularization and a scaling algorithm 
have been used to compute the distance and its gradient efficiently. Numerical examples are 
provided to show the behavior of UOT distance applied in FWI problem and comparison with L2 
distance has been provided. 

Introduction 
Full waveform inversion (FWI) is a high-resolution seismic imaging algorithm and it was 
proposed in the early 1980s. It is a nonlinear PDE-constrained optimization problem with 
physical properties such as velocity and density of underground as the control parameters, and 
the waveform received by the receivers as the state parameters. Depending on different 
physical model, the constraint PDE can be simple wave equation, acoustic wave equation or 
elastic wave equation. Because of the huge size of the scale, gradient based optimization 
methods such as gradient descent, l-BFGS and Newton method is needed. And the gradient 
generally can be achieved by the adjoint state method. With the improvement of the computing 
power, FWI has been more and more applied in the industry.  

In conventional methods, the L2 distance is used in the misfit function during optimization to 
measure the difference between observed and synthetic data. As a nonlinear optimization 
problem, FWI algorithm suffers the existence of local minima. One of the reasons causing the 
local minima is cycle-skipping issue, which can occur as the phase difference between two 
seismic signals is larger than half wavelength. To mitigate this problem, using optimal transport 
(OT) distances (Wasserstein distance) in FWI problem have been proposed recently. The 
optimal transport distance is to compare two positive measures with equal total mass. When 
comparing two non-negative equal mass functions, the OT distance will keep monotonically 
increasing as one function is shifting away from another function. This property provides 
convexity of OT distance as a misfit functional and it is one of the main reasons to introduce OT 
distance to FWI problem (Engquist et al., 2016). Several works have been proposed of applying 
OT distance to FWI problem recently (Métivier et al., 2016a; Yang et al., 2018; Yong et al., 
2019). 

In this work we consider the FWI problem with wave equation as the constraint. We introduce 
the unbalanced optimal transport (UOT) distance to remove the equal mass restriction. To 



 GeoConvention 2020 2 

compute the distance and gradient efficiently, an entropy regularization method and a scaling 
method have been used.  

Theory 
1. Unbalanced Optimal Transport Problem
For two discrete vectors 𝑓 and 𝑔, the optimal transport problem is defined as:

𝑊$
$(𝑓, 𝑔) = min

,∈ℝ/×/
< 𝑇, 𝐶 >	= 	6 𝑇7,8𝐶7,8
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7,8:;
, 𝑠. 𝑡. 𝑇19 = 𝑓, 𝑇,19 = 𝑔.								@1A 

Here the cost matrix 𝐶 is defined as 𝐶7,8 = B𝑥7 − 𝑥8B
$, and the 𝑊$(𝑓, 𝑔) is called 2-Wasserstein

distance. One of the disadvantages of optimal transport is nonnegative measures with the same 
total mass are required. To overcome this limitation, we introduce the unbalanced optimal 
transport (UOT) distance mainly based on the work in (Chizat et al., 2018). The UOT distance 
with entropy regularization can be represented as: 

𝑊$,E,EF
$ (𝑓, 𝑔) = min

,∈ℝ/×/
< 𝑇, 𝐶 > − 𝜀𝐸(𝑇) + 𝜀J𝐾𝐿(𝑇19|𝑓) + 𝜀J𝐾𝐿(𝑇,19|𝑔).									@2A 

Here 𝐸(𝑇) = 	−∑ 𝑇7,8(log 𝑇7,8 − 1)7,8  is the entropy regularization for computational efficiency. 
And 𝐾𝐿(𝑓|𝑔) = ∑ 𝑓7(log 𝑓7/𝑔7 − 1)7  is the Kullback-Leibler divergence which measures the 
difference between vector or matrix 𝑓 and 𝑔. Equation (2) is equivalence to: 

𝑊$,E,EF
$ (𝑓, 𝑔) = min

,∈ℝ/×/
𝜀𝐾𝐿(𝑇|𝐾) + +𝜀J𝐾𝐿(𝑇19|𝑓) + 𝜀J𝐾𝐿(𝑇,19|𝑔).								@3A 

Where 𝐾7,8 = exp	(− XY,Z
E
). The dual formula of equation (3) is given by: 
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Also, if 𝜙∗	 and  𝜓∗ is the solution of equation (4), then: 

𝑇7,8∗ = 𝑒
\Y
∗

E 𝐾7,8𝑒
]Z
∗

E .
To compute the regularized UOT distance, a coordinate ascent method can be used. Starting 
from the initial value 𝑣(h) = 19, the dual problem (4) can be computed with iterating: 
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Here 𝑢7
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q

r  and 𝑣8
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sZ
q

r . As soon as the solution is found, the gradient is given by: 

∇uY𝑊$,E,EF
$ (𝑓, 𝑔) = 	−𝜀J _𝑒

a
\Y
∗

EF
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2. Full Waveform Inversion
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Since optimal transport problem was proposed for positive measures, exponential normalization 
is used in this paper: 

ℎ(𝑓) = 𝑒xu. 
Here 𝑘 is the normalization coefficient. The full waveform inversion problem can be described as 
a PDE constraint optimization problem: 

min
z
𝐽(𝑐) =66𝑊$,E,EF

$

9}

~:;

�ℎ(𝑃~𝑢�), ℎ@𝑃~𝑑���,�A�
9�

�:;

. 

Here 𝑃~ is the projection operator maps the wavefield to the 𝑟th receiver to record seismic data. 
The objective function is constrained by 𝑁� wave equations: 

1
𝑐$
(𝑢�)�� − Δu� = 𝑓�,			𝑠 = 1,… ,𝑁�.	

To achieve the gradient of the objective function, adjoint equations need to be solved: 
1
𝑐$
(𝑣�)�� − Δv� = −6𝑃~,@𝑘𝑒x�}��A

,∇𝑊$,E,EF
$ �ℎ(𝑃~𝑢�), ℎ@𝑃~𝑑���,�A� .
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~:;
The gradient of UOT distance is given by equation (5). Then the gradient of objective function is: 
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Numerical Results 
1. One dimensional example
This example shows the UOT distance is more sensitive with respect to time shift of signal than
the conventional L2 distance. Figure 1 plots two Ricker wavelets 𝑓 and 𝑔. The signal 𝑔 is fixed
at 𝑡 = 0.5 and we compute the L2 and UOT distance between 𝑓 and 𝑔 when 𝑓 is shifting from
𝑡 = 0.3 to 𝑡 = 0.7. The L2 and UOT difference are shown in Figure 2 (a) and (c). With proper
normalization coefficient, the UOT difference can has a monotone behavior as the distance
between 𝑓 and 𝑔 increases. Figure 2 (b) and (d) show the adjoint source with L2 and UOT
distance. Comparing to L2 adjoint source, the energy of UOT adjoint sources concentrate on the
position of the wavelet and providing less detail. This effect will lead to a smoother gradient
during the optimization.

Figure	1.	Two	Ricker	wavelets.	
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Figure	2.	(a):	L2	difference.	(b):	L2	adjoint	source.	(c):	UOT	difference	with	different	normalization	
coefficients.	(d)	UOT	adjoint	sources	with	difference	normalization	coefficients.	

2. Marmousi 2 Model
We perform FWI with L2 and UOT distance on Marmousi 2 data. The true model and initial
model are shown in Figure 3. There are 11 equally spaced sources and 101 equally spaced
receivers located on the top of the model. A 5 Hz Ricker wavelet is used as the source function.
The nonlinear conjugate gradient is used during the optimization. Figure 4 shows the L2 and
UOT gradient at the first optimization step. Comparing to the L2 gradient, UOT gradient
provides more large-scale structure. In Figure 5, left figure is the inversion result with L2
distance which shows the optimization is trapped at a local minimum and provides errors at the
depth between 0.5 to 2.0 km. On the right figure, we perform nonlinear CG algorithm with UOT
distance at first 20 iterations and then perform nonlinear CG algorithm with L2 distance at 21-50
iteration. The large-scale information by UOT gradient largely improves the inversion result.

Figure	3.	Marmousi	2	model	and	initial	model	used	in	the	experiment. 
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Figure	4.	L2	gradient	and	UOT	gradient	at	the	first	iteration	of	optimization. 

Figure	5.	Left	figure:	L2	inverse	result	after	50	nonlinear	CG	iterations.	Right	figure:	inverse	result	with	1-20	
iteration	using	UOT	distance,	21-50	iteration	using	L2	distance.	
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