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Summary 

Time-lapse seismic data are widely used to monitor reservoir changes. And time-lapse 
waveform inversion is a valuable tool for seismic exploration. A popular time-lapse waveform 
inversion strategy is the double-difference time-lapse waveform inversion (DDWI) (inversion of 
the differential data starting from the reverted baseline model). It is an effective way to solve the 
problem that baseline and monitor inversions of time-lapse waveform inversion are easily at 
different convergences, and it results in coherent model error in time-lapse inversion. 
Nevertheless, the double-difference method (DDWI) demands an almost perfect repeatability 
between baseline and monitor surveys, which is the most challenging for DDWI. Specially, when 
sources wavelets for the two data sets are different, the results of DDWI are seriously impacted. 
To solve this problem, we propose a double-wavelet double-difference time-lapse waveform 
inversion method (DWDDWI). This works because the data difference caused by wavelet 
difference is eliminated. DWDDWI is developed based on the convolution relationship between 
the shot gather and Green's function. And its premise is that the wavelets for both baseline and 
monitor data sets are known. To test the feasibility of this method, a numerical example is used. 

Introduction 

With the increasing of exploration requirements, more powerful seismic inversion tool is needed. 
As a potential power to recover physical properties of subsurface rock, the full waveform 
inversion (FWI) is introduced to seismic exploration by Lailly and Bednar (1983) and Tarantola 
(1984). It is researched widely and developing fast (Virieux and Operto, 2009). Since FWI can 
produce inversions with a high resolution, it is helpful to estimate the parameter difference 
related to the subsurface property change from time-lapse data sets. 

Conventionally, the baseline inversion and monitor inversion are standalone, which use the 
same initial model (Plessix et al., 2010). To reduce the expensive computation of performing 
whole FWI for twice, some researchers utilize the inverted baseline model as the initial model 
for monitor data inversion, this also provides a better initial model for the monitor inversion 
(Oldenborger et al., 2007; Miller et al., 2008; Routh and Anno, 2008; Routh et al., 2012). 
Unfortunately, neither the two strategies mentioned above cannot essentially remove the 
coherence time-lapse model error attributed to the different convergence degrees between 
twice inversions. To address this problem, Watanabe et al. (2004) propose the differential 
waveform tomography in frequency domain performed to a crosswell time-lapse data set. Onishi 
et al. (2009) apply a similar scheme. After that this method is developed as double-difference 
waveform inversion (DDWI) (Watanabe et al., 2004; Onishi et al., 2009; Zheng et al., 2011; 
Zhang and Huang, 2013; Routh et al., 2012; Asnaashari et al., 2011, 2012, 2013, 2015; 
Maharramov and Biondi, 2014; Denli and Huang, 2009; Yang et al., 2015). Successful real-data 
examples of DDWI are given by Yang et al. (2014, 2016) who use well-repeated ocean-bottom-
cable data sets. 
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Nevertheless, the double-difference method (DDWI) demands a mostly perfect repeatability 
between the two surveys (Asnaashari et al., 2015), which is the most challenging for it. 
Specially, when source wavelets for baseline and monitor data sets are different, the results of 
DDWI are seriously impacted (Yang et al., 2015). To solve this problem, we propose a double-
wavelet double-difference time-lapse waveform inversion method (DWDDWI). This works 
because the data difference caused by wavelet difference is eliminated. DWDDWI is developed 
based on the convolution relationship between the shot gather and Green’s function. And its 
premise is that the wavelets for both baseline and monitor data sets are known. To test the 
feasibility of this method, a numerical example is used. 

Full waveform inversion (FWI) 

Full waveform inversion (FWI) as an iterative inversion method estimates subsurface 
parameters by matching synthetic data (𝐮𝐬𝐲𝐧(𝐦) ), a function of model parameter 𝐦 , with

observed data. The most common way to accomplish this is minimizing the L2 norm of data 
residual δ𝐮 (𝑢𝑠𝑦𝑛(𝑚) − 𝑢𝑜𝑏𝑠):

𝐸(𝑚) =
1

2
δ𝑢𝑇δ𝑢.  (1) 

Using Taylor expansion and ignoring things behind and including the second order term, we 
obtain linearized formula, then taking the derivative with respect to 𝑚 , finally setting the 
derivative as zero to minimize the objective function and after easy algebraic operations, we 
obtain: 

Δ𝑚 = −𝐻−1𝒈,                                                                  (2) 
where 𝑯 and 𝒈 is Hessian matrix and Jacobian matrix, respectively. To avoid the expensive 
computation of inversion Hessian matrix, gradient-based methods use identical matrix as an 
approximate substitution of 𝑯, such as steepest-descent (SD) method and non-linear conjugate 
gradient (NCG) method (Mora, 1987; Hu et al., 2011). In this paper, we apply the SD method for 
FWI, which helps to converge globally (Hu et al., 2011), and the corresponding model 
perturbation with step length can be expressed as: 

Δ𝑚 = −𝜇𝒈.                                                                     (3) 
It is the negative direction of gradient and the step length 𝜇 is a constant or filter to calibrate the 
gradient. In this paper, we use the well-control method to calibrate the gradient, in which a 
segment of well log is used to figure out the step length as a factor fixing phase misfit and 
scaling the gradient, for details please refer to Margrave et al. (2011a) or Romahn and Innanen 
(2017). Also, we precondition the gradient with deconvolution imaging condition to compensate 
the spherical spreading of seismic wave (Margrave et al., 2011b), which can achieve the similar 
effect to that of approximate inverse Hessian of Shin et al. (2001) but avoid the calculation of 
Hessian.     

Time-lapse inversion strategies 

Scheme I, parallel difference method. The parallel difference method considers the baseline 
inversion and monitor inversion as two independent produces which use the same initial model. 
Then the time-lapse model comes from the difference of the twice inversions.  

Scheme II, sequential difference method. It is developed from scheme I, and the only change is 
using the inverted baseline model as the starting model of the monitor inversion instead of the 
same initial model. 
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Scheme III, double-difference time-lapse waveform inversion (DDWI). The first inversion for the 
baseline data is the same as the above two schemes. But in the second inversion for the 
monitor data, instead of minimizing the difference between the observed and synthetic monitor 
data, DDWI attempts to minimize the difference between monitor and baseline data residuals. It 
uses a composed data as the observed data which equals to the synthetic data of the inverted 
baseline model plus the difference between the baseline and the monitor data. It can solve the 
problem that neither scheme I nor scheme II cannot essentially remove the coherence time-
lapse model error attributed to the different convergence degrees between twice inversions. 

Double-wavelet double-difference time-lapse waveform inversion (DWDDWI) 

The composed data for the second monitor model inversion is flowing: 
𝑑2 = 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + (𝑑𝑚𝑜𝑛𝑖𝑡𝑜𝑟 − 𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒),                                      (4)

where 𝑺𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 is the synthetic data of the inverted baseline model,  𝒅𝒎𝒐𝒏𝒊𝒕𝒐𝒓 is the measured 

monitor data, and  𝒅𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 is the measured baseline data. Since a seismic shot gather can be 
expressed as the convolution between the source wavelet and Green’ function, the above 
equation can be rewritten as:     

𝑑2 = 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + (𝑊𝑚𝑜𝑛𝑖𝑡𝑜𝑟 ∗ 𝐺𝑚𝑜𝑛𝑖𝑡𝑜𝑟 − 𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝐺𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒).                (5)
where   𝑾𝒎𝒐𝒏𝒊𝒕𝒐𝒓  and  𝑾𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 is the source wavelet for monitor and baseline shot data, 

respectively, 𝑮𝒎𝒐𝒏𝒊𝒕𝒐𝒓 and  𝑮𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆  is Green’s function for monitor and baseline shot data, 
respectively, and 𝑺𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 is synthetic data using the baseline source wavelet. When 𝑾𝒎𝒐𝒏𝒊𝒕𝒐𝒓  

and 𝑾𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆are identical, the difference is only from  𝑮𝒎𝒐𝒏𝒊𝒕𝒐𝒓 − 𝑮𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 which is irrelevant to 
the wavelet. But in the case that  𝑾𝒎𝒐𝒏𝒊𝒕𝒐𝒓 and  𝑾𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆   are different, the difference is from 

𝑾𝒎𝒐𝒏𝒊𝒕𝒐𝒓 ∗ 𝑮𝒎𝒐𝒏𝒊𝒕𝒐𝒓 − 𝑾𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 ∗ 𝑮𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 which is relevant both to the wavelets and Green’s 
functions representing the property of the subsurface. 

For the situation of baseline and monitor wavelets are different, we reconstruct monitor data by 
performing the convolution between baseline wavelet and monitor data, and reconstruct monitor 
data by performing the convolution between monitor wavelet and baseline data, then the new 
composed data becomes: 

d2 = Sbaseline
′ + (dmonitor

′ − dbaseline
′ ) 

= 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
′ + (𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑑𝑚𝑜𝑛𝑖𝑡𝑜𝑟 − 𝑊𝑚𝑜𝑛𝑖𝑡𝑜𝑟 ∗ 𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒),  (6) 

expressed with Green’s function as: 
𝑅2

′ = 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
′ + (𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑊𝑚𝑜𝑛𝑖𝑡𝑜𝑟 ∗ 𝐺𝑚𝑜𝑛𝑖𝑡𝑜𝑟 − 𝑊𝑚𝑜𝑛𝑖𝑡𝑜𝑟 ∗ 𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝐺𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

 = 𝑺𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆
′ + (𝑾 ∗ 𝑮𝒎𝒐𝒏𝒊𝒕𝒐𝒓 − 𝑾 ∗ 𝑮𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆)  (7) 

Where𝑊 = 𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑊𝑚𝑜𝑛𝑖𝑡𝑜𝑟 = 𝑊𝑚𝑜𝑛𝑖𝑡𝑜𝑟 ∗ 𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  is the double wavelet which is used to 
generate forward modeling data 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

′ during the iterative wave inversion. After performing 

the reconstructions to baseline and monitor data sets, the new data sets are of the same 
wavelet 𝑊 , the data difference is from  𝐺𝑚𝑜𝑛𝑖𝑡𝑜𝑟 − 𝐺𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 related to the subsurface change 
only. 

Numerical example 

We do the time-lapse inversions for all the three schemes in the case that the wavelets for 
baseline and monitor data sets are identical. The initial model we use for the first baseline data 
inversion is shown in Figure 1a. And the inverted results of scheme I, II, and III are shown in 
Figure 1d-f. We can see that the coherence time-lapse model residual appears everywhere in 
the results of scheme I, II, but appears in a very small area in the result of scheme III (DDWI). In 
Figure 1g, we show the inverted time-lapse model of DDWI in the case of the baseline and 
monitor data is of 10Hz and 8Hz wavelet, respectively. Figure 1h is the inverted time-lapse 
model of DWDDWI in the case of the baseline and monitor data is of 10Hz and 8Hz wavelet, 
respectively. We can see that DDWI is seriously suffering from the unrepeatability of baseline 
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and monitor data sets caused by wavelet difference, while DWDDWI can handle with this 
situation quiet well. 

(a) (b)

(c) (d)

(e)  (f)

(g) (h)

Figure 1: (a) The true baseline model. (b) The initial baseline model. (c) The true time-lapse 
model. (d), (e) and (f) is the inverted time-lapse model of scheme I, II, and III, respectively, in 
the case that the wavelets for baseline and monitor data sets are identical. (g) and (h) is the 
inverted time-lapse model of scheme III and DWDDWI, respectively, in the case that the 
wavelets for baseline and monitor data sets are different. 

Conclusions 

It is common view that the DDWI method has better difference recovery ability than the others. 
Compared with parallel difference and sequential difference time-lapse inversion strategies, 
DDWI is not easy to be affected by the different convergences between baseline and monitor 
data inversions. However, when source wavelets for baseline and monitor data sets are 
different, the results of DDWI are seriously impacted. but DWDDWI can handle with this 
situation well. DWDDWI works because the data difference caused by the wavelet difference is 
eliminated by the constructed common wavelet. DWDDWI is developed based on the 
convolution relationship between the shot gather and Green’s function. And its premise is that 
the wavelets for both baseline and monitor data sets are known. 
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