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Summary 

3D land data acquisitions are often under-sampled along offset and azimuth directions because 
of large shot and receiver line intervals. In marine data acquisition, data are well sampled in the 
inline direction but coarsely sampled in the crossline direction. These issues can often be 
alleviated by seismic interpolation, which is an important step in data processing since many 
processing and migration tools require regularly sampled input data. 
We compare two methods of seismic amplitude reconstruction. The first one is Singular Spectrum 
Analysis (SSA) which is based on rank reduction methods. In this approach, we generate Hankel 
matrices from constant frequency data and reduce their rank by using Truncated Singular Value 
Decomposition (TSVD). Since missing traces and random noise increase the rank of the Hankel 
matrix, TSVD changes the data by removing noise and interpolating missing traces. By reducing 
the rank, the algorithm iteratively infills missing traces. The second method is Minimum Weighted 
Norm Interpolation (MWNI) which infills missing traces by transforming the data to the Fourier 
domain and removing sampling artifacts by enforcing wavenumber-domain sparsity. 
We present how these two methods perform on synthetic 2D data. Both methods perform equally 
well for noiseless data, linear or moderate curvature, but show some differences in the way they 
perform when events have complex shapes or low signal to noise ratio. 

Introduction 

Reconstruction methods can be subdivided into wave-equation based and signal-processing 
based. Inside this second subdivision, some methods use transform domains such as Fourier or 
Radon transforms and others use prediction filters in different domains.  
The objective of this paper is to compare the applications of Singular Spectrum Analysis (SSA) 
and Minimum Weighted Norm Interpolation (MWNI) for interpolation of missing traces in irregular 
patterns. SSA works in the 𝑓 − 𝑥 domain of the data while relying on the rank reduction of the 
Hankel matrices. The interpolation algorithm uses an iterative algorithm applied by (Abma and 
Claerbout, 1995). On the other hand, MWNI works in the 𝑓 − 𝑘 domain by minimizing the size of 
the transform coefficients measured by a wavenumber weighted norm. The weights let us to 
synthesize a prior known spectral signature of the unknown wavefield. 

Background 

Singular Spectrum Analysis 

Singular Spectrum Analysis (SSA) is a technique to reduce the degrees of freedom of data 
transformed by a Hankel transform. It can be implemented with an iterative algorithm to interpolate 
seismic data. We can summarize the algorithm in 6 steps: 
1- Transforming data from the time-space domain to the frequency-space.
2- Generating a Hankel matrix for each constant frequency.
3- Decomposition of the Hankel matrix in its singular spectrum via TSVD.
4- Rank reduction of the Hankel matrix.
5- Averaging in the Hankel matrix anti-diagonals.
6- Inverse Fourier transformation to return to the time domain.



To cast the problem of data interpolation into SSA, we start by defining a sampling operator 𝑇(𝑖) =
1 for nonzero components and 𝑇(𝑖) = 0 for the missing traces. 
The processes of reconstructing and denoising for each frequency can be written as follows: 

𝑆𝑓
𝑖 = 𝑆𝑓

𝑜𝑏𝑠 + (𝐼 − 𝑇) ⊙ 𝐹𝑆𝑆𝐴𝑆𝑓
𝑖−1, 𝑖 = 1,2, …         (1)

where 𝑖 is the iteration, 𝑓 denotes the constant frequency we are applying SSA, 𝐼 =

𝑜𝑛𝑒𝑠(𝑠𝑖𝑧𝑒(𝑇)), the operator ⊙ is the Hadamard product for two matrices, and 𝐹𝑆𝑆𝐴 is the function

of the SSA application. The algorithm stops either when the maximum number of iterations is 
reached, or the energy of change in the recovered traces is less than a threshold (Oropeza and 
Succhi, 2011). 
Equation (1) works well for pure signal but for noisy data, a change is required to take into account 
that each sample is formed in part by noisy and in part by the signal. Oropeza and Succhi (2011) 
proposed a modification of the iterative algorithm: 

𝑆𝑓
𝑖 = α𝑖𝑆𝑓

𝑜𝑏𝑠 + (1 − α𝑖)𝑇 ⊙ 𝐹𝑆𝑆𝐴𝑆𝑓
𝑖−1 + (𝐼 − 𝑇) ⊙ 𝐹𝑆𝑆𝐴𝑆𝑓

𝑖−1, 𝑖 = 1,2,..         (2)

where α is an iteration-dependent scalar that linearly decreases from α1 ≃ 1 to α𝑝𝑚𝑎𝑥 = 0. It 
causes the gradual embedding of the filtered data to the original data. 

Minimum Weighted Norm Interpolation 

Minimum Weighted Norm Interpolation (MWNI) is designed to work simultaneously in the 𝑓 − 𝑥 
and 𝑓 − 𝑘 Fourier domains by iteratively mapping across the two domains by multidimensional 
Fourier transforms. The algorithm works with one frequency slice at a time. Considering the signal 

as: 𝑆ω = [𝑠1, 𝑠2, … , 𝑠𝑁𝑥
]

𝑇
, and the sampling operator 𝑇, the complete data, and the observed data

are connected by a linear system of equations 𝑑 = 𝐿𝑆. Solving the system leads to an 
undetermined system of equations. Among all the possible solutions, MWNI chooses a solution 
that minimizes a model norm. The inversion can be reduced to solving the constrained 
minimization problem. To obtain the desired solution we should minimize the cost function: 

(λ𝑊𝑠
𝑇𝑊𝑠 + 𝐿𝑇𝑊𝑑

𝑇𝑊𝑑𝐿)𝑆 = 𝐿𝑇𝑊𝑑
𝑇𝑊𝑑𝑑,          (3)

where λ is a trade-off parameter, 𝑊𝑠 is a matrix of model weights and 𝑊𝑑 is a matrix of data. The 
following is the results of the minimization of cost function:  

(λ𝐼 + 𝑊𝑠
−𝑇𝐿𝑇𝑊𝑑

𝑇𝑊𝑑𝐿𝑊𝑆
−1)𝑆̃ = 𝑊𝑠

−𝑇𝐿𝑇𝑊𝑑
𝑇𝑊𝑑𝑑.                               (4)

Equation 4 is solved by setting the trade-off parameter to 0 and letting the number of internal 
iterations in the conjugate gradient play the role of regularizer (Trad, 2003). The FFT algorithm 
assumes data are regular so binning is needed before applying the algorithms for interpolation 
(Liu and Sacchi, 2004) and (Trad, 2009). 

Examples 

To compare SSA results with MWNI we tested a synthetic data set with 3 hyperbolic events for 
different sparseness. To quantify the comparisons we use the following quality measure: 

𝑄𝐹 = 10 𝑙𝑜𝑔10 (
‖𝑑0‖2

2

‖𝑑𝑓−𝑑0‖
2

2),  (5) 

where 𝑑0 is the result after applying interpolation algorithms and 𝑑𝑓 is the expected data. The 

larger the QF number, the better the performance for the interpolation. A perfect prediction gives 
a 𝑄𝐹 → ∞. 
We use synthetic data to test the capability of SSA and MWNI algorithms for recovering removed 
traces. Figure 1b shows a 2D synthetic shot gather with three hyperbolic events, each with 
different curvature. We remove 40% of the 60 traces (Figure1a). Figures 1c and 1e are examples 
of applying SSA and MWNI methods respectively. The QF for the incomplete data compared to 
the complete data is −0.15(𝑑𝐵) (input QF). The output QF for the SSA algorithm (interpolated to 

complete data) is 10.40 (𝑑𝐵), whereas for MWNI it is 12.45 (𝑑𝐵).  For the SSA algorithm, which 
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assumes linear events, we use spatial windows with 25 traces each and a half overlap. We choose 
a target rank of the Hankel matrix to 3, for which the algorithm converged after 7 iterations. The 
rank reduction preserves the coherency of the events, but the does not completely recover the 
amplitudes (Figure 1-c and 1-e). The prediction error (residuals) from both algorithms are shown 
in Figures 1-d and 1-f. 

 
Figure 1: Comparison between SSA and MWNI algorithms applied to 2-D synthetic gather and 
40% killed traces. a) Input data; b) expected result; c) SSA interpolation; d) SSA residuals; e) 
MWNI interpolation; f) MWNI residuals. 
 
To test the robustness of the two algorithms to the chosen parameters, we run MWNI and SSA 
interpolation algorithms with 200 different realizations of missing traces for different percentages 
of missing traces. Figure 2 is the result of applying SSA and MWNI interpolation algorithms. The 
graph shows that both methods give comparable results and by increasing the percentages of 
gaps in each method, the output QF is decreasing. However, results show a slightly better but 
consistent performance for MWNI for this case. 
Figure 3 shows the interpolated trace (#15) of Figure 1 for MWNI and SSA results and the 
expected data. It seems that the interpolated traces are comparable however the SSA result is 
contaminated with more random noise. 

 
 
 
 
 

 
 
 
 
 
 

Figure 2: Mean and standard error of the output 
QF versus the percentages of missing traces for 
SSA and MWNI interpolation results. 

Figure 3: interpolation results for trace #15 for 
MWNI (blue graph) and SSA (red graph). 



Conclusions 
We have compared two methods of seismic interpolation: singular spectrum analysis (SSA), 
which depends on the rank reduction of the Hankel matrix via truncated SVD, and minimum 
weighted norm interpolation (MWNI) that minimizes a wavenumber weighted norm. Both SSA and 
MWNI give comparable interpolation results, with the output QF decreasing as the percentages 
of gaps increases. The MWNI interpolation shows a slightly better performance for our tests, but 
some factors like the shape of the events, gap sizes and noise, have a strong influence on this 
observation.  
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