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Summary 

Comparisons are given for moveout-based offset-to-angle calculation methods for PS data, 
including an improved method for obtaining the conversion point.   

Theory 

In the context of AVO analysis, Walden (1991) introduced a quick, approximate method for 
mapping offsets to angle of incidence for P-wave reflection data of horizontally layered media.  It 

combines the NMO equation, 𝑇𝑃 = (𝑇𝑃0
2 + 𝑥2 𝑣𝑃2

2⁄ )1/2, with the ray-parameter definition, 𝑝 =
𝑑𝑇𝑃 𝑑𝑥⁄ , where 𝑇𝑃 is PP-reflection traveltime, 𝑇𝑃0 is zero-offset 𝑇𝑃, 𝑥 is offset, 𝑣𝑃2 is the rms P-

wave velocity, 𝑝 = sin 𝜃𝑃 /𝑣𝑃 is the ray parameter, 𝜃𝑃 is the P-wave angle at reflection, and 𝑣𝑃 is 
the interval velocity just above the reflector.  Together these yield Walden’s relation, sin 𝜃𝑃 =
𝑥𝑣𝑃 (𝑇𝑃𝑣𝑃2

2 )⁄ .  An identical procedure for SS reflection data yields sin 𝜃𝑆 = 𝑥𝑣𝑆 𝑇𝑆𝑣𝑆2
2⁄ , where 𝑇𝑆,

𝑣𝑆2, 𝑣𝑆, and 𝜃𝑆 are analogues to the P-wave quantities above.  This is a significant improvement 
over the straight ray approximation given by sin 𝜃𝑃 = 𝑥 (𝑇𝑃𝑣𝑃2)⁄ .

The same reasoning can be applied to converted-wave reflection data (e.g., Bale et al., 2001). 
Now the ray parameter is given by 𝑑𝑇𝐶 𝑑𝑥⁄ , and we require a PS moveout equation.  The
simplest such expression, given by Tessmer and Behle (1988), is 

𝑇𝐶 = √𝑇𝐶0
2 + 𝑥2 𝑣𝐶2

2⁄ ,

where 𝑣𝐶2, 𝑇𝐶0, are 𝑇𝐶 are analogous to 𝑣𝑃2, 𝑇𝑃0 and 𝑇𝑃.  

Alternatively, Thomsen (1999) provides a higher order result: 

𝑇𝐶 = √𝑇𝐶0
2 +

𝑥2

𝑣𝐶2
2 +

𝐴4𝑥4

1 + 𝐴5𝑥2
,   𝐴4 =

−(𝛾2
2 − 1)2

4(𝛾eff + 1)2(𝛾0 + 1)𝑣𝐶2
4 𝑡𝐶0

2  ,   𝐴5 =
−𝐴4𝑣𝐶2

2

1 − 𝑣𝐶2
2 𝑉𝑃2

2⁄

Estimates of the ratios 𝛾0, 𝛾2, and 𝛾eff (defined in Thomsen (1999)) can be obtained in the 
course of converted-wave processing.   

A third approach to PS moveout is to note that 𝑇𝐶 = 𝑡𝑃 + 𝑡𝑆 and 𝑥 = 𝑥𝑃 + 𝑥𝑆, where 𝑡𝑃 and 𝑡𝑆 
refer to pre- and post-conversion traveltimes, and 𝑥𝑃 and 𝑥𝑆 refer to portions of the offset before 
and after the conversion point.  Because the pre- and post-conversion legs each possess the 
same ray-parameter as the full reflected ray, we can in principle define two additional moveout 
equations, as discussed by Bale et al. (1999): 

(1) 

(2)
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𝑡𝑃 = √𝑡𝑃0
2 + 𝑥𝑃

2 𝑣𝑃2
2⁄ and    𝑡𝑆 = √𝑡𝑆0

2 + 𝑥𝑆
2 𝑣𝑆2

2⁄  .

The new quantities in Eqs 3 and 4 can be obtained from Thomsen (1999), using his Eqs 26-29 
for 𝑥𝑃 and 𝑥𝑆, Eqs 20 and 22 for 𝑡𝑃0 and 𝑡𝑆0, and Eqs 21 and 23 for 𝑣𝑃2 and 𝑣𝑆2; then 𝑡𝑃 and 𝑡𝑆 
are obtained from Eqs 3 and 4 of this paper. These can be used in 𝑑𝑡𝑃 𝑑𝑥𝑃⁄  and 𝑑𝑡𝑆 𝑑𝑥𝑆⁄  to

derive expressions for 𝑝.   

Eqs 3 and 4 can then be combined to yield a double square root (DSR) moveout expression: 

𝑇𝐶 = √𝑡𝑃0
2 + 𝑥𝑃

2 𝑣𝑃2
2⁄   + √𝑡𝑆0

2 + 𝑥𝑆
2 𝑣𝑆2

2⁄

Eqs 1 through 5 yield five possible ray parameter expressions for PS data: 

𝑝(Tessmer & Behle) =
𝑥

𝑇𝐶𝑣𝐶2
2

𝑝(Thomsen) =
𝑥

𝑇𝐶
(

1

𝑣𝐶2
2 + 𝐴4𝑥2

2 + 𝐴5𝑥2

(1 + 𝐴5𝑥2)2) 

𝑝(P leg) =
𝑥𝑃

𝑡𝑃𝑣𝑃2
2

𝑝(S leg) =
𝑥𝑆

𝑡𝑆𝑣𝑆2
2

𝑝(DSR) =
𝑥𝑃

𝑡𝑃𝑣𝑃2
2

𝑑𝑥𝑃

𝑑𝑥
+

𝑥𝑆

𝑡𝑆𝑣𝑆2
2

𝑑𝑥𝑆

𝑑𝑥

Any of these can yield sin 𝜃𝑃 or sin 𝜃𝑆, given an interval velocity estimate at the reflection point, 
using sin 𝜃𝑃 = 𝑝𝑣𝑃 or sin 𝜃𝑆 = 𝑝𝑣𝑆.  However, the derivatives in Eq. 10 deserve further comment. 

Because 𝑥 = 𝑥𝑃 + 𝑥𝑆, the two derivatives must sum to unity. 𝑝(DSR) is therefore a weighted

average of 𝑝(P leg) and 𝑝(S leg).  If calculated correctly, 𝑝(P leg) = 𝑝(S leg), and this provides a 
key to improved conversion-point calculations.  As indicated above, 𝑥𝑃 can be estimated from 

an expression of the form 𝑥𝑃 = 𝑥𝑓(𝑥), as detailed in Eqs 26-29 of Thomsen (1999).  We can 
then obtain 𝑥𝑆 = 𝑥 − 𝑥𝑃. Employed in Eqs 8 and 9, these approximate values, which we will 

denote 𝑥̅𝑃 and 𝑥̅𝑆, generally yield slightly different ray parameters.  If we define an error 𝛿, 
where 𝑥̅𝑃 = 𝑥𝑃 + 𝛿 and 𝑥̅𝑆 = 𝑥𝑆 − 𝛿, then using Eqs 3-4 and 8-9 we can derive the following first 
order estimate: 

𝛿 =
𝑝̅(P leg) − 𝑝̅(S leg)

1 ∕ 𝑡𝑃̅

𝑣𝑃2
2 + 𝑥̅𝑃

2 ∕ 𝑡0𝑃
2 +

1 ∕ 𝑡𝑆̅

𝑣𝑆2
2 + 𝑥̅𝑆

2 ∕ 𝑡0𝑆
2

A few iterations of using Eq. 11 quickly refines the Thomsen (1999) conversion-point estimate, 
and the results of Eqs 8-10 converge efficiently to the same value. 

(7) 

(3), (4) 

(6) 

(8) 

(9) 

(5) 

(10) 

(11)
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Testing 

To test the relative merits of Eqs 6, 7, 8 and 10, a simple layered model is described below.  In 
these tests Eq. 10 uses values of 𝑥𝑃 and 𝑥𝑆 made convergent through use of Eq. 11, and these 
partial offsets would give identical results in Eqs 8 and 9.  For our tests of Eq. 8 however we will 
use the values of 𝑥𝑃 and 𝑥𝑆 calculated from Eqs 26-29 of Thomsen (1999), as we observe that 
they give slightly superior results when used in Eq. 8.  Ray-tracing is performed to generate the 
true incidence (𝜃𝑃) and reflection (𝜃𝑆) angles for several offsets, then 𝜃𝑃 and 𝜃𝑆 angles are 
predicted by each of the three methods and compared to exact results. For comparison, straight 
ray results are also given, which for PS reflections are given by sin 𝜃𝑃 = 𝑥𝑃 (𝑡𝑃𝑣𝑃2)⁄  and sin 𝜃𝑆 =
𝑥𝑆 (𝑡𝑆𝑣𝑆2)⁄ .  Comparable PP reflection results are also shown.

Straight-ray results are poor, as expected, but all bending-ray methods are useful for 𝜃𝑃 < ~30º.  
At longer offsets, however, Eqs 7, 8 and 10 yield better results than Eq. 6.  This is generally true 
for a wide variety of models, as will be shown in the presentation. 

Layer 𝑣𝑃 (m/s) 𝑣𝑆 (m/s) Thickness (m) 

1 1200 320 150 

2 1800 880 300 

3 2000 1100 200 

Table I. Properties of a three-layer model 
used to test Eqs 6, 7, 8 and 10 and the 
straight ray approximations. 

Figure 1. Comparison of results from Eqs 6, 7, 8 and 10 to exact angles obtained from raytracing. 
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For a more realistic test we apply these methods to PP and PS reflections from a point within a 
constant thickness blocky model based on well-logs.  The model is obtained by 30 m blocking of 
P and S velocity logs from Hussar, Alberta (Margrave et al., 2011), as shown in Figure 2. 
Raytracing for reflections at 1500 m depth is illustrated in Figure 3. This gives benchmark 
traveltimes and angles for a variety of offsets. 

Applying Walden’s approximation and Eqs 6, 7, 8 and 10 yields the results in Figure 4 below. 

Discussion 

It is clear from results that we can improve upon the Tessmer and Behle expression when it 
comes to converting offsets to angle.  Eq. 7, based on the Thomsen (1999) moveout gives 
accuracy for PS data comparable to the Walden expression for PP data.  (Other PS moveout 
expressions of a form similar to Eq. 2 have also been suggested (e.g., Cheret et al., 2000; Li, 
2003).) Eqs 8-10 provide greater accuracy than Eq. 7 when supplied with consistent 𝑥𝑃 and 𝑥𝑆  
values.  Eq. 8 performs even better with more approximate 𝑥𝑃 and 𝑥𝑆  values.  We assume that 
it partially corrects for a bias inherent in underlying theory, a bias which is opposite to that in the 
straight ray method.  While none of these expressions is adequate at the highest angles, the 
more accurate expressions enable use of higher incidence angles than can be accessed using 
the Tessmer and Behle expression alone. 

Figure 2. Constant-thickness models 
obtained by 30 m blocking of P (blue) 
and S(red) velocity logs from Hussar, 
Alberta (Margrave et al., 2011).  The 
arrow shows the reflection depth used in 
raytracing. 

Figure 3. Results of PP and PS raytracing through 
the model shown in Figure 2.  Black lines 
correspond to P-wave rays and red lines to S-wave 
rays. 
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Novel Contribution 

Possible methods for converted-wave offset-to-angle calculations have been tested and 
compared.  A method is given for refining the conversion point used in some of these.  One 
advantage of PS surveys is their ability to generate large incidence angles with moderate 
offsets.  Methods such as those studied here will help us to capitalize on larger angles in 
multicomponent AVO and inversion. 
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Figure 4. Comparison of “true” incidence and reflection angles obtained from raytracing with 
estimates obtained from approximate ray expressions described in this work. 


