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Summary 

Using different datasets, we showcase an automated workflow for identifying perforation (perf) 
shots and subsequently inverting to calibrate Velocity Models (VMs) using Particle Swarm 
Optimization (PSO) in order to efficiently and accurately locate microseismic events. First, we 
show that perf signals can be discriminated from other triggers using crosscorrelation (CC) 
methods and hodogram analysis. Next, we use these identified perfs and group them along 
sections of the well to construct well-constrained VMs based on quantitative and objective 
attributes. With an example dataset, we demonstrate an automated approach that allows a 
threefold improvement (two days) in elapsed processing time when compared to using a standard 
approach (six days).  
 

Theory / Method  

Automatic Perf Detection using CC 

CC techniques have been used to detect repeating microseismic events, known as multiplets 
(Arrowsmith and Eisner, 2006; De Meersman et al., 2009; Castellanos and Van der Baan, 2015; 
Jones et al., 2014). The assumption is that these events come from the same source area, 
traveling with similar ray paths, and so they are expected to have nearly-identical waveforms. 
Similarly, we can assume that perfs from the same hydraulic fracturing stage share similar 
waveforms, i.e., the perfs exhibit high correlation with other perfs, while sharing dissimilar 
characteristics, i.e., low correlation, to that of any other microseismic events. Preliminary studies 
by Castellanos et al. (2019) found this perf similarity approach successfully detected most perfs 
in a dataset.  In our automated workflow, we perform the following steps: 1) for each individual 
stage we select all the triggers recorded during perf times (usually a 5-10 minutes time span when 
they are detonated);  2) for each trigger pair combination, we extract a time window of data around 
autopicked P-waves and compute a weighted average of the CC coefficients across all sensors; 
3) we create an upper triangular matrix containing the CC coefficients of all pair permutations; 
and 4) a minimum CC threshold is set, which allows identifying the group of highly correlated 
triggers, most likely the perfs. However, when more than one group is found, which is common in 
simultaneous frac treatment or due to the triggering of nearby microseismic activity, we add a fifth 
step, where we use particle motion analysis (e.g., Montalbetti and Kanasewich, 1970) to identify 
the group whose back-azimuths point towards the stage zone centroid. 
 

Figure 1 compares the waveforms from a perf and a typical microseismic event. The event on 
the right shows the arrival of the P-wave followed by a higher-amplitude S-wave, whereas the 
perf (on the left) shows a strong P-wave arrival followed by a lower amplitude S-wave. There 
are also differences in the frequency content. These two triggers belong to two different clusters 
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(or groups) of highly similar triggers. When plotting the particle motion vectors (or back 
azimuths) of all triggers within each detected cluster, we observe that the perf cluster point 
towards the perf zone whereas the microseismic events do not. 

 

 

Figure 1. Top: Waveforms and spectrograms from two different clusters recorded during 
expected perf times. Bottom: Corresponding particle motions from the two clusters detected 

within the perf time window. By comparing particle motion (green arrows) and perf zone-sensor 
angles via dot product, we can find which cluster most likely contains the perf waveforms. 

PSO-based Velocity model Inversion 

For VM inversion we apply PSO, a population-based stochastic optimization technique, using 
data with known locations (perf shots, string shots) and early-stage microseismic events (Clerc 
and Kennedy 2002; Urbancic et al., 2006). By varying the target function and imposed constraints, 
PSO can generate VM solutions suitable for a space and time-evolving rock mass and  multiple 
monitoring array configurations. Since using a single VM for the entire treatment well may not be 
suitable due to variable local velocity, we allow for VM variations across defined sections, here 
called “checkpoints”, along the well (e.g., heel, mid-lateral, toe). This allows the automated 
inversion approach to develop a discrete (or blocky) two-dimensional VM. For short wells (lengths 
< 2 km) with limited structural changes, two or three sections or “checkpoints” per well may be 
enough, whereas for longer wells (lengths> 2 km), with more variable structure, a higher number 
of sections are likely required.  
 
For each checkpoint, a quantitative criterion is used to identify the optimal solution. This requires: 
1) balancing the desire to minimize the residuals (observed vs modelled travel times) and 2) 
ensuring that velocity variations follow impedance contrasts range within the geological medium 
 

Results, Observations 

We apply the perf detection methodology on a test dataset with 21 stages. We successfully 
detected 138 out of 139 perfs (99% success rate) and with a single false positive. Figure 2 shows 
upper triangular CC matrices for all triggers (310 in total) recorded during perf times of five 
consecutive stages (out of 21). In Figure 2a, we apply an appropriate time window that 
encompasses the signals, and as a result, clusters of highly correlated triggers (perfs) are clearly 
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visible.  In Figure 2b, a very short time window for CC analysis was used, resulting in high 
crosscorrelation values due to the influence of individual periods of seismic signal and not the 
average seismic signal. Using a CC threshold of 0.8 is sufficient to correctly gather all the perfs 
into one group (Figure 2a) without any false positives, whereas a shorter time window gathers 
into one group all the perfs but also an additional 158 false positives. 

 

Figure 2. Upper-triangular CC matrix for all triggers (310 in total) recorded during perf time 
windows of five consecutive stages: (a) an appropriate time window length of 26 ms with a 0.8 

CC threshold detects all perfs with no false positives and (b) a very short time window was used 
that results in distorting CC values. 

 

Figure 3. Effect of different time window lengths and minimum CC threshold on the detection of 
clusters containing perfs: (a) 25 ms time window, (b) 120 ms time window and (c) waveforms of 

the first five triggers recorded at the same sensor. 
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Figure 3 shows the effect of different time window lengths and CC threshold on perf detection. 
Here we use triggers recorded during perf time windows for one stage from a second example 
dataset. In Figure 3a, an ideal window length (mostly P-wave signal) and CC threshold greater 
than 0.65 allows for proper discrimination between a non-perf (trigger #1) and actual perfs 
(triggers #2 to #9). In Figure 3b, a longer window is used that includes noise, thus reducing the 
overall CC levels. This prevents the detection of all the perfs within the same cluster. Figure 3c 
shows waveforms from the first five triggers recorded at the same sensor, where we clearly 
observe the waveforms of the first trigger (non-perf) differs from the rest (perfs). 

 

PSO-based Velocity model Inversion 

We apply the automated PSO-based VM inversion on a dataset consisting of three vertical 
receiver arrays to monitor microseismicity from a stimulation targeting the Wolfcamp and 
Spraberry formations in the Permian Basin. Figure 4 shows the perf location results and histogram 
that reveal most perfs locate within 30 ft from their expected known locations. This provides 
confidence in the use of the PSO-based VMs along the different sections of the treatment well to 
subsequently locate MS events.  
 

 

Figure 4. Perf location results (color-scaled by checkpoint) after PSO-based velocity model 
inversion: (a) depth view, (b) map view and (c) histogram of perf location difference (calculated 
vs known). 

 
We apply the automated PSO-based VM inversion on a second dataset, where a conventional 
vertical receiver array monitors microseismicity from a stimulation targeting a formation in the 
Western Canadian Sedimentary Basin. In previous work (Castellanos et al, 2019), we assess 
different scenarios and show why a single PSO VM is not adequate to locate all perfs close to 
their expected locations, and the need for slightly varying VMs. Figure 5 shows the resulting 
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microseismic locations using the automated approach (Figure 5c,5d,5e) are consistent with the 
standard approach (Figure 5a, 5b)., For most perfs in this dataset, the automated PSO algorithm 
finds a best-fitting model with location difference less than 25 m. Furthermore, the constrained 
PSO algorithm generally only deviates from well log determined velocities on the order of ±5% 
with respect to the P- and S-wave velocities and on the order of ±10% for anisotropy.  

 
Figure 5. Microseismic event locations are shown for the standard approach in map view (a) 

and depth view (b) and the automated approach in map view (c) and depth view (d). The events 
are coloured by stage in (a)-(d) and coloured by PSO checkpoint VM in (e). 

Discussion/Conclusions 

We have shown an innovative approach consisting of integrating the perf detection using cross-
correlation and velocity model optimization using PSO to provide a scalable robust workflow for 
microseismic calibration. This allows for a fast and quantitative assessment of optimal velocity 
models at different sections along the treatment well, aimed at significantly reducing the time an 
analyst would need to visually inspect potential perfs and apply QC measures to finalized velocity 
models. We recommend prior noise attenuation on perfs since low SNR data would require lower 
cross-correlation thresholds (<0.8), resulting in undesired false positives. As for PSO inversion, 
prior site information such as sonic and other logs, anisotropy, formation tops, presence of 
adjacent wells, are key to evaluating and constraining a feasible range of velocity perturbations 
to find optimal velocity models. 
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