
GeoConvention 2020 1 

Theory based machine learning viscoelastic full waveform 

inversion based on recurrent neural network 
Tianze Zhang, Kristopher Innanen, Jian Sun, Daniel Trad  

CREWES, Department of Geoscience, University of Calgary 

Summary 

In this study, we use a recurrent neural network (RNN) to achieve viscoelastic full waveform 
inversion. The RNN is a typical type of neural network that consists of several RNN cells. In this 
study, each RNN cell is designed according to the stress velocity viscoelastic wave equation. With 
the Automatic Differential engine built in the machine learning library, the exact gradient for the 
trainable parameters, the velocity models and attenuation models, would be given based on the 
computational graph. Both the simple and complex model numerical inversion tests prove that 
the inversion based on this theory-guided recurrent neural network can give accurate inversion 
results. We also test the inversion with different objective function. L1, L2 and Huber objective 
function are tested. We conclude that all the objective function inversion can give promising 
results.   

Introduction 

Full waveform inversion (FWI) could be considered as a powerful method based on data fitting to 
invert velocity models. During full waveform inversion, we would first generate synthetic 
wavefields by using the initial models. The forward propagating wavefields would be calculated, 
and shotrecords would also be recorded at the same time to form the synthetic shotrecords. The 
zero-lag correlation between the backpropagation wavefields and the forward propagation 
wavefields would be  calculated as the gradients to update the models. Sometimes, the Hessian 
matrix would also be calculated to tackle the crosstalk problem. In recent years, adding 
attenuation into FWI had been studied by more researchers by using the viscoelastic wave 
equation based on the velocity-stress formulation. Fabien-Ouellet et al. (2017) explored the use 
of OpenGL to develop a portable code that can take advantage of the many parallel processor 
architectures now available and presented a program for 2D and 3D viscoelastic FWI in the time 
domain. Yang et al. (2016) studied 3-D multiparameter full waveform inversion (FWI) in 
viscoelastic media based on the generalized Maxwell/Zener body including the arbitrary number 
of attenuation mechanisms. Groos et al. Groos et al. (2012) explored which degree viscoelastic 
modeling is relevant during a full waveform inversion of shallow seismic surface waves, and 
concluded that if we use Q factors that are too far away from the Q factor of the observed data 
the inversion result becomes worse than ignoring attenuation. Trinh et al. (2018) used the SEAM 
Phase II Foothill dataset to simultaneously invert the P and S wave speed. 
Jian et al. (2019) used the recurrent neural network to achieve the scalar wave full waveform 
inversion. Each of the RNN cells is designed according to the scalar wave equation, which forms 
the theory-based machine learning seismic data inversion method. In this paper, based on their 
idea, we introduce the recurrent neural network (RNN) to achieve viscoelastic FWI. In this study, 
the cells in RNN are designed according to the viscoelastic wave equation. Exact gradients for 
the trainable parameters would be given by the Automatic Differential engine built in the machine 
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learning framework. By using an optimization method and the step length for each model, we can 
update the models and reduce the misfit between the observe data and synthetic data. 

Theory and method 

1. Forward modeling
The 2-D first order viscoelastic wave equation can be derived from the momentum conservation
equation and the viscoelastic constitutive relationship. Equation (1) shows the viscoelastic wave
equation written in the stress-velocity form. 𝜎𝑥𝑥 𝜎𝑧𝑧 and 𝜎𝑥𝑦 are the stress tensors. 𝑣𝑥 and  𝑣𝑦 are

the velocity fields in horizontal and vertical directions respectively. 𝑟𝑥𝑥, 𝑟𝑦𝑦 and 𝑟𝑥𝑦  are the memory

variables. 𝜏𝜎 is the relaxation time which we  use for both the P-waves and S-waves (Robertsson

et al. (1994)). 𝜏𝜀
𝑃and 𝜏𝜀

𝑆 define the attenuation level of the media. Π is the relaxation modulus

corresponding to P-waves analogous to 𝜆 + 2𝜇 in the elastic case, where 𝜆 and 𝜇 are the Lame
constants.  Following Robertsson et al (1994), we have the viscoelastic wave equations:
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Equations (1) show the viscoelastic wave equation we use in this study. The partial derivatives in 
time and space are approximated by finite-difference of order 2 on a staggered grid, in which 
velocities are updated at integer time steps Δt. The stress fields and memory variables are 
updated at half-time steps. In this paper, the particle derivative is calculated according to the 
image convolution. We create kernels to calculate partial derivatives in different directions 
according to the staggered grid method. The kernels would scan the wavefields and calculate 
image convolutions to get the partial derivatives. 

2. Automatic differential
By using the machine learning library, like TensorFlow or Pytorch. We do not need to calculate
the gradients all by ourselves; the gradients can be calculated by using the Automatic Differential
engine built-in these machine learning frameworks. During the forward propagation, every
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mathematical operation is recorded to form the Dynamic Computational Graph. The exact 
gradients are calculated according to this Dynamic Computational Graph by using the 
backpropagation method as we just explained.  

Synthetic test 
In this section, we will perform some numerical tests to examine the efficiency of the proposed 
methods. We also test the inversion with different objective functions. We tested three objective 
functions, which are the L1 norm. L2 norm and Huber objective function. From the definition for 
the loss functions, we can see that L2 objective function is the least-squares norm, and L1 
objective function is the least-absolute values norm. The Huber objective function is the 
combination of the L1 norm and the L2 norm. The l2 norm is the misfit we use in the traditional 
FWI. 

𝑙𝑜𝑠𝑠𝐿1 = |𝑥 − 𝑦| (2) 

𝑙𝑜𝑠𝑠𝐿2 =
1

2
|𝑥 − 𝑦|2 (3) 

𝑙𝑜𝑠𝑠𝐻𝑢𝑏𝑒𝑟 = {
0.5|𝑥 − 𝑦|2, 𝑖𝑓 |𝑥 − 𝑦| < 1
|𝑥 − 𝑦| − 0.5,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

Figure 1. (a), True Vp model, (b) True Vs model, (c) True Qp model, (d) True Qs model 
In this numerical test, we use part of the Marmousi model to test the efficiency of this inversion 
method. The source of the wavelet is the Ricker’s wavelet with a main frequency of 35Hz. The 
size of the model is 50×100 grid points. The grid length of the model is dz = dx = 2m. Seven shots 
are evenly distributed on the top of the model. Every grid point at the top of the model is located 
a receiver. The total receiving time for the shot records is3s with a time step of 0:004s. We use 
2nd order in time and 2nd order in space staggered grid method to simulate the synthetic data. 
Figure 1 (a), (b), (c) and (d) are the true models for Vp, Vs, Qp and Qs. Figure 1 (a), (e), (i), (m) 
are the initial models for Vp, Vs, Qp and Qs respectively. 
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Figure 2. Inversion results for different objective function 
Figure 2 shows the inversion results for different objective functions. From the inversion results 
we can see that all three objective function can give the right inversion results also the very high 
wavenumber components of the model are better reconstructed by using the Huber and l1 
objective function. On the one hand, the bandwidth-limited problem may cause this inaccuracy 
problem for the very high component of the models. On the other hand, this may also due to the 
nature of using different objective functions to perform inversion, which means that the l1 and 
Huber function would be more robust objective functions for the full waveform inversion. From 
Figure 2 we can also see that the high attenuation part of the model has been correctly updated. 

Conclusion 
In this study, based on the viscoelastic wave equation, we build the viscoelastic RNN cell and 
performed the viscoelastic full waveform inversion, which forms the theory-based machine 
learning full waveform inversion. We also test the L1, L2 and Huber objective function to perform 
RNN based FWI. All, the three objective functions have given us the right inversion results, 
however, the L1 and Huber norm have the better ability to reconstruct the high wavenumber 
component of the models.  
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