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Introduction 

Over the last few years, because of the increase in low cost computer power, 
individuals and companies have stepped up investigations into the use of machine 
learning in many areas of E&P.  For the geosciences, the emphasis has been in 
reservoir characterization, seismic data processing and to a lesser extent, interpretation. 
The benefits of using machine learning (whether supervised or unsupervised) has been 
demonstrated throughout the literature and yet the technology is still not a standard 
workflow for most seismic interpreters.  

This lack of uptake can be attributed to several factors including: a lack of software 
tools, clear and well-defined case histories and training.  Fortunately, all these factors 
are being mitigated as the technology matures. Rather than looking at machine learning 
as an adjunct to the traditional interpretation methodology, both supervised and 
unsupervised machine learning techniques should be on the front end of the 
interpretation workflow.  

Workflow 

By using statistical tools such as Principal Component Analysis (PCA) and Self 
Organizing Maps (SOM) a multi-attribute 3D seismic volume can be “classified”. The 
PCA reduces a large set of seismic attributes both instantaneous and geometric, to 
those that are the most meaningful. The output of the PCA serves as the input to the 
SOM, a form of unsupervised neural network, which when combined with a 2D color 
map facilitates the identification of clustering within the data volume.  When the correct 
“recipe” is selected the clustered or classified volume allows the interpreter to view and 
separate geological and geophysical features that are not observable in traditional 
seismic amplitude volumes.  Seismic facies, detailed stratigraphy, direct hydrocarbon 
indicators, faulting trends, and thin beds are all features that can be enhanced by using 
a classified volume. 

Examples of Thin Bed Resolution below Tuning 

The tuning-bed thickness or vertical resolution of seismic data traditionally is based on 
the frequency content of the data and the associated wavelet. Seismic interpretation of 
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thin beds routinely involves estimation of tuning thickness and the subsequent scaling of 
amplitude or inversion information below tuning. These traditional below-tuning-
thickness estimation approaches have limitations and require assumptions that limit 
accuracy. The below tuning effects are a result of the interference of wavelets, 
which are a function of the geology as it changes vertically and laterally. However, 
numerous instantaneous attributes exhibit effects at and below tuning, but these are 
seldom incorporated in thin-bed analyses. A seismic multi-attribute approach employs 
self-organizing maps to identify natural clusters from combinations of attributes that 
exhibit below-tuning effects. These results can exhibit changes as thin as a single 
sample interval in thickness. Self-organizing maps employed in this fashion analyze 
associated seismic attributes on a sample-by-sample basis and identify the natural 
patterns or clusters produced by thin beds.  

Examples of this approach to improve stratigraphic resolution will be demonstrated with 
cases from the Niobrara Formation of the Denver-Julesburg Basin (Figure 1) and the 
Eagle Ford of South Texas  and with a multi-component case which reveals karsting in 
the Ellenburger in East Texas. 

Figure 1 Comparison of original amplitude data with a 64 neuron self-organizing map based on 8 instantaneous attributes.  The 
well composite highlights the tie between the SOM neurons and the B Chalk Bench which is resolved to 5 milliseconds.  The red-
brown neurons within the bench correlate to the maximum carbonate content and best pay within the reservoir.  



 GeoConvention 2020 3 

Figure 2 Comparison of original amplitude data with a 64 neuron SOM result based on 10 instantaneous attributes.  The Lower 
Eagle Ford is represented by 16 distinct neuron classes and beds as thin as 5 feet were detected. 
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