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Summary 
Multiparameter FWI is commonly affected by parameter crosstalk. These effects are described 
by the Hessian, which also impacts the shape of the objective function iso-surfaces and the 
convergence of the optimization algorithms. This study focuses on finding an intermediate model 
space where the parameter classes are decorrelated, i.e., where the Hessian is an identity matrix, 
to minimize crosstalk and reach an accurate minimum that could be transformed to the ρ, VP, and 
VS model space. Transformation rules between model spaces were applied using transformation 
matrices (T) constructed to satisfy constraints imposed by the Hessian of the intermediate system. 
Overall, this FWI method produced good VS estimations but did not overcome a reference FWI in 
the VP and ρ results, since more crosstalk was introduced. However, improvements on the 
structure of the Hessians were brought for some areas of the mesh, which makes the 
decorrelation ideas promising to minimize these coupled effects. The drawbacks were related to 
a localized approach used to compute T, which, in future work, might need to consider the 
crosstalk contributions of multiple grid cells. 
 

Introduction 
Crosstalk between parameters of different classes means that different physical properties are 
confused in the inversion, yielding poorly accurate results and convergence slowness (Operto et 
al., 2013; Keating and Innanen, 2019). A common strategy to mitigate these effects is to design 
FWI workflows based on minor correlation of radiation patterns of a set of parameters. 
Additionally, these coupled effects are quantified by the Hessian, whose structure impacts the 
objective function iso-surfaces and therefore the convergence of the optimization algorithms 
(Innanen, 2020c). Thus, crosstalk suppression could be achieved with the manipulation of the 
Hessian, since no parameter correlation would exist if it had an identity matrix structure or a 
multiple of it (Operto et al., 2013; Métivier et al., 2015). Therefore, the objective of this study was 
to obtain crosstalk corrected values of Vp, Vs, and density (ρ) by performing a frequency domain 
FWI for an intermediate set of parameters that ideally should not contain any leakage, since its 
Hessians are expected to approximate the identity matrix. 
 

Background 
In the isotropic elastic scenario, the medium is characterized by the density ρ and the Lamé 
parameters λ and µ. Here, the wave equation described by Pratt (1990) can be written in matrix 
form as: 
 

𝜌𝜔2𝒖 + 𝑐11∇(∇ · 𝒖) − 𝑐44∇ × (∇  ×  𝒖) + ∇(𝑐11  −  2𝑐44)(∇ · 𝒖) + ∇𝑐44(∇𝒖 +  ∇𝒖𝑇) + 𝒇 =  0       (1) 
 
where ω is the angular frequency, u is the particle displacement vector, f is the source term and 
c11 = λ + 2µ and c44 = µ. Although c11, c44, and ρ is the root parameterization, Equation 1 can adopt 
any other 3 elastic parameters that are related to them. In the case of the ρ, VP, and VS, these 
relationships are: 
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𝑐11 = 𝑉𝑃
2𝜌;     (2)       𝑐44 = 𝑉𝑆

2𝜌     (3)     
 
Moreover, each re-parameterization is a transformation between coordinate systems (Innanen, 
2020a, b, c, d). To change to a different model space, we must consider that the objective function 
(φ) is a scalar quantity and is invariant under transformations. However, the model updates are 
vectors that change under transformations. Hence, to map a contravariant vector from an initial 
system s to a new system r and backwards, these rules are necessary: 
 

𝑠𝜈 = 𝑡𝜇
𝜈𝑟𝜇;      (4)     𝑟𝜈 = (𝑡−1)𝜇

𝜈 𝑠𝜇     (5)  

 
where T (t in indicial notation) is a transformation matrix constructed to produce iso-surfaces of φ 
with a particular shape in the transformed model space. Since scalar quantities do not change 
under transformations, finding the minimizer of φ in the r space is equivalent to finding it in the s 
system.  
 
On the other hand, the linear form of the Gauss-Newton approximation of the Hessian is: 
 

𝐻(𝑖,𝑗),(𝑘,𝑙) = (
𝝏𝒅𝒑

𝝏𝒔𝒊,𝒋
) (

𝝏𝒅𝒑

𝝏𝒔𝒌,𝒍
)

∗

        (6) 

 
Where dp corresponds to the predicted data and j, l refer to the parameter class and i, k to the 
position. Figure 1 shows the full Hessian organized in 3x3 blocks; when the parameter classes 
are not the same (j ≠ l), i.e., off-diagonal blocks, the full Hessian describes the existing trade-off. 
Then, no coupled effects between parameters of different classes would exist if these values were 
zero. If the values of the full Hessian are extracted at a fixed position per block, a local 3x3 matrix 
can be formed (Point-wise Hessian), characterizing the crosstalk between parameters of different 
classes only at that location. Moreover, the same figure illustrates that if we perturb the parameter 
classes at one fixed position and want to study the change of the gradient in all locations for all 
parameter classes, vertical profiles across the selected location can be extracted and, by 
reshaping them per block of the full Hessian, a point-probes Hessian can be constructed.  
 
Similarly, when φ has ellipsoidal iso-surfaces with eccentricities and misalignments, the 
parameter information is mixed due to problems encountered by the Steepest Descent method to 
reach the global minimum. Innanen (2020a and c) proved that, for a quadratic objective function, 
the Steepest Descent and the Gauss-Newton updates are parallel, if the Hessian behaves as an 
identity matrix, reaching a more accurate local minimum. Hence, we can design transformation 
matrices that meet those constraints by solving the transformation rules for the Hessian (Innanen, 
2020c): 
 

𝑡𝜇
𝜆𝐻𝜆𝜎(𝑠)𝑡𝜈

𝜎 = 𝐻𝜇𝜈(𝑟) = 𝛿𝜇𝜈      (7) 

 
Workflow  
The applied FWI workflow is observed in Figure 2. The optimization algorithm used was Steepest 
Descent and a multiscale approach was executed with 8 groups of 4 frequencies each, with values 
from 1 to 20Hz. The main assumption was to work with a point-wise Hessian of the s model space 
to find the T matrix that transforms it into an identity matrix in the r model space, as a first attempt 
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to make the process computationally feasible. Additionally, Hessians computed with the final 
estimates were analyzed to determine how close they were to the sought identity matrix. To 
achieve this, we used an evaluation metric consisting of a 3x3 matrix formed after computing the 
norm of each block of a studied point-probes Hessian to capture the existent crosstalk between 
parameters of different classes in all the mesh and not only at the location selected to compute 
T. The closer to zero the off-diagonal terms of this matrix, the less crosstalk between parameters 
of different classes is encountered in all locations.  
 

 
Figure 1. Illustration of a full Hessian, modified from (Métivier et al., 2015), and how a point-wise 
and a point-probes Hessian can be constructed from it; nz and nx are the number of samples in 
the vertical and horizontal direction of the model grid, respectively.  
 

 
Figure 2. Re-parameterized FWI workflow followed in this study. 
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Results 
A series of sources and receivers were placed at the top of the model grid, but also some receivers 
were placed at the bottom to enhance the illumination of the heterogeneities. Figure 3a shows 
the true values of ρ, VP, and VS. Two types of FWI were performed: (1) a reference inversion, i.e., 
without applying any transformation rule, and (2) an inversion with the proposed workflow; both 
with the same frequency bands, initial models, optimization strategy, and number of iterations. 
Figure 3b illustrates the results obtained without applying transformation rules. Noticeable 
crosstalk effects are observed around the ρ anomaly and subtle crosstalk is seen below the VP 
heterogeneity. The models estimated with the re-parameterized FWI are shown in Figure 3c. This 
time, much more crosstalk was encountered around the ρ and VP heterogeneities.  
 

 
Figure 3. (a) True ρ, VP, and VS models. (b) Models estimated with a baseline FWI, i.e., without 
re-parameterization. (c) Models estimated with a re-parameterized FWI after selecting location 
x=50 and z=20 to compute T.  
 
The point-probes and point-wise Hessian, as well as the normalized crosstalk metric computed 
with the estimates from the reference inversion are observed in Figure 4. Overall, the local 
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Hessian had a structure distant from the identity matrix. Moreover, the crosstalk metric showed a 
similar organization of the values, with strong crosstalk between ρ and VP and between ρ and VS, 
but much less between VP and VS, in all locations, as is expected for this model space.  
 

 
Figure 4. Point-probes Hessian computed with baseline estimates. The 3x3 matrix on top is the 
local Hessian at the perturbed grid cell. The 3x3 matrix at the bottom is the crosstalk metric 
calculated from the shown point-probes Hessian.  
 
The Hessians and crosstalk metric computed in the r model space with the estimates from the re-
parameterized inversion are observed in Figure 5. The identity matrix structure was observed only 
at and close to the grid cell chosen to compute T, not in the entire mesh. Outside this small area, 
different correlation patterns appeared in the blocks of the point-probes Hessian. Hence, this 
explains why the crosstalk metric summarized a noticeable trade-off between model parameters 
in all the grid cells. 
 

Conclusions 
After treating the FWI re-parameterization as a coordinate transform problem and seeking 
parameters where the Hessian is the identity matrix by designing transformation matrices (T) 
based on single points, a new model space where the parameter classes were decorrelated was 
found, but only in locations close to the grid cell chosen to compute T, losing this structure as we 
get distant from the location and introducing coupled effects between parameters of different 
classes. The obtained results indicate that a different numerical procedure to compute T should 
be a matter of future investigation, aiming to produce a more constant identity structure in all 
locations by considering the contribution of crosstalk in multiple grid cells and not only at a fixed 
point, for instance by using the point-probes Hessian to design the transformation matrices. 
 



 

 

GeoConvention 2023 6 

 
Figure 5. Point-probes Hessian computed with estimates obtained from a re-parameterized FWI. 
The 3x3 matrix on top is the local Hessian at the perturbed grid cell. The 3x3 matrix at the bottom 
is the crosstalk metric calculated from the shown point-probes Hessian.  
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