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Summary  
Prior to injecting CO2 in a carbon capture facility, a baseline seismic survey is recorded, and after 
some CO2 injection, a second survey, the monitor, is also recorded. The difference between these 
two surveys must be related to the CO2 injection. However, other effects can produce spurious 
differences that mask the CO2 related one. In this extended abstract we test a set of recurrent 
neural networks to minimize these spurious differences while keeping the differences related to 
CO2 injection. We also test convolutional neural networks as a base case to improve with the 
recurrent ones. We found that long short-term neural networks and the simple recurrent neural 
networks perform the best with data from CaMI-Field Research Station.  
 
Theory 
Seismic time-lapse imaging for CO2 monitoring requires the subtraction of two seismic vintages: 
the baseline and the monitor. The monitor is recorded after some CO2 has been injected and the 
seismic difference should be related to this CO2. However, the different conditions of the 
environment can create spurious differences between the two seismic vintages. That is why some 
shaping filtering is applied to one of the vintages, usually the monitor, to make it the more similar 
to the baseline in the area outside the reservoir.  
 
Prior to this work, time-lapse imaging was successfully performed at CaMI-FRS with geophone 
data (Kolkman-Quinn and Lawton, 2022). However, the CO2 plume observed in the geophone 
data was not visible in the distributed acoustic sensing (DAS) data. Several theories about this 
were that the DAS data was not sensitive enough or that the CO2 related anomalies were buried 
below the noise. For this reason, we experiment with some recurrent neural network architectures 
to see if they can decrease the dissimilarities outside the reservoir zone and maintain the CO2 
related differences.  
 
We used three types of neural networks to match the monitor traces to the baseline traces: 
convolutional, simple recurrent and long short term memory (LSTM) neural networks. During 
training the number of samples is constrained to a depth above the expected reservoir where the 
neural networks will learn about differences not related to CO2 injection. After training, the different 
neural networks are applied to the whole traces, so they undo differences not related to CO2 
injection, unmasking only the CO2 related differences. 
 
The first type of neural networks we tested are the convolutional neural networks (Chollet, 2021). 
They work like a convolution filter in signal analysis theory with its coefficients determined by the 
neural network training algorithm. The most well-known convolutional neural networks are 2-
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dimensional due to their application in computer vision but there also exists the 1-dimensional 
version that we use here. 
 
The left part of Figure 1 shows a schematic diagram of a 1-d convolutional neural network. The 
squares in the middle are a list of coefficients that form the kernel, and this kernel is convolved 
with the input trace to obtain a filtered value. A bias vector, that is not depicted in the figure, can 
also be added to the result. The filtered value is passed through an activation function σ to obtain 
one sample of the output trace.  

                             
Figure 1. On the left is a 1-d convolutional neural network. ON the right is a recurrent neural network. 
 
The second type of neural networks that we tested were the recurrent neural networks (Chollet, 
2021). They work like the convolutional neural networks analyzing a small window of the input 
each time, but they also pass information about the current window to itself for the analysis of the 
next window of data. This information is the internal state of the recurrent neural network and is 
extremely useful for time series analysis. 
 
The right part of Figure 1 depicts a general recurrent neural network as a black box. The input is 
divided into windows xt and the network produces a window of the output yt. In addition, 
information ht−1 from the application of the network to the previous window xt−1 is also used. This 
information is called internal state and an updated version of it, ht, is produced for the network 
application to the next window xt+1. The recurrent neural networks we test are two: simple 
recurrent and long short term memory neural networks. 
 
The left part of the Figure 2 displays a simple recurrent neural network (Chollet, 2021). The input, 
output and internal state are the same as shown before. The input window xt goes into a dense 
layer Wx . The internal state ht−1 also goes to a dense layer Wh. There is also an optional bias 
vector b. They are all summed up and the result is feed to an activation function σ. The result is 
both the output window yt and the updated internal state ht. 
 
Long short term memory (LSTM) neural networks are also recurrent neural networks with a more 
complex inside part (Chollet, 2021). The right part of Figure 2 shows the internal structure of a 
LSTM. It is more complex than the previous network, so we recommend consulting Chollet, 2021 
to get more detailed information. One significant difference with respect to simple recurrent neural 
networks is the internal state. A LSTM can remember information from the distant past more easily 
than a simple recurrent network due to their internal structure and memory. 
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Figure 2. On the left is the internal structure of a simple recurrent neural network. On the right is the internal 
structure of a long short term memory (LSTM) neural network. 

Results 
We applied the neural networks described in the previous section to two RTM vintages form a 
DAS VSP time lapse survey recorded at CaMI Field Research Station. The line is the number 13 
recorded twice in 2017 and 2021. Figure 3 shows the plan and profile views of this survey. In the 
plan view, the asterisks are the shot positions on the surface, while the o symbol is the observation 
well position where the DAS fibre is. The shots were made with an EnviroVibe with no more than 
a metre distance difference between shot positions of the two vintages. 

 
Figure 3. On the left is a plan view of the VSP line 13 at CaMI Field Research Station. The asterisks are 
the shot positions, and the “o” is the well head. On the right is the velocity model with VSP DAS channels.  

The profile view on the same figure shows the velocity model with the shot positions on the surface 
as asterisks. The well is shown with circles in the middle going from 50m to 320m. The reservoir 
zone is around 300m depth close to the observation well.  
The reverse time migration (RTM) images were created with an acoustic technique using the 
velocity model of Figure 3 (Monsegny, 2021). The artifacts are the product of end of line effects 
and variable velocities in the near surface not accounted for. We expect these artifacts to be the 
same on baseline and monitor images and cancel out in the subtraction. 
All neural networks were trained in the same way. We paired each trace in the baseline RTM 
image with its corresponding trace in the monitor image. Then we shuffled the data randomly, but 
deterministically using the same fixed pseudo random seed in every experiment. The first half is 
used for training, the next quarter for validation during training and the last quarter for testing after 
training. 
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For training the traces were cut below 200m where there is not expected a CO2 related difference. 
All traces were also normalized with respect to the maximum absolute value amplitude in both 
baseline and monitor RTM images. Neural networks work better when the data is normalized 
(Chollet, 2021), and we also keep the relative amplitudes between both images that is important 
for time lapse studies. 
Other important training parameters were the learning rate equal to 0.002, the batch size equal 
to 32 traces, the loss function is the mean squared error and the optimization algorithm is the 
adaptative moment estimation or Adam. 
Figure 4 shows the results after applying the different neural networks. In the figures the central 
vertical line is the VSP well position and the magenta one is the CO2 injection well. Part a) is the 
RTM difference without shaping. Part b) is the result after using a two layered convolutional neural 
network. Parts c) and d) correspond to the simple recurrent neural network. The difference is that 
in d) two recurrent neural networks were stacked vertically. Parts e) and f) are the results for the 
LSTM neural networks. As with recurrent networks, the difference is that in f) two LST are stacked 
vertically. All the neural network results show an improvement over the original time lapse result. 
The events above the reservoir zone are mitigated while the CO2 is preserved and better defined 
laterally. 

 
              (a) Without shaping. Nrms error = 67%              (b) Two layered convolutional. Nrms error = 47% 

 
              (c) Simple recurrent. Nrms error = 47%           (d) Two layered simple recurrent. Nrms error = 50% 

 
                            (e) LSTM. Nrms error =  43%                           (f) Two layered LSTM. Nrsm error = 41% 
Figure 4. Reverse time migration differences between monitor and baseline. The black line in the center is 
the position of the VSP well. The magenta line is the approximate position of the CO2 injection well.  
 
Figure 4 also shows the normalized mean squared (Nrms) error as a quantitative measure of the 
time lapse imaging results. All the neural network results decreased this error.  
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Conclusions 
All the neural networks tested were able to decrease the original nrms error. With a couple of 
exceptions recurrent neural networks performed better than recurrent and lstm networks better 
than the recurrent ones. Also, stacking two neural networks also helped to diminish the nrms 
error. 
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